
#OpenCORD

First CORD Release:
Building and Using CORD

#OpenCORD

Building a CORD POD

David Bainbridge, Ali Al-Shabibi

#OpenCORD
3

Automation Concepts

Types of automation in CORD

-  Deployment automation

-  Going from bare metal to POD as easily as possible)

-  Provides framework for CI/CD

-  Operational automation

-  Scaling POD resources (up/down) as they are plugged/unplugged

-  Each component viewed as a Field Replaceable Unit (FRU)

-  Test Automation

-  Correctness testing during deployment and operation

-  Should be able to run Chaos monkey (desired feature)

#OpenCORD
4

Server Roles

Servers will fill typically either of these roles:
Head node
Storage node
C-node: compute node for pure containers
V-node: OpenStack compute nodes (for

VMs)
Hybrid nodes may be supported too
Smaller PODs (micro and mini) may be headless:

controlled from a remote (shared) head
We will start with homogeneous server hardware

and will specialize based on operational
experience

#OpenCORD
5

Software Layers

#OpenCORD
6

Deployment Model
1. All artifacts are buildable in a Vagrant box

a.  Ensures repeatability and consistency of experience across different environments

2. Artifacts are then published to the head-node

a.  Docker artifacts are pushed to a docker registry

b.  Maven artifacts are push to a maven repo

c.  Software packages are pushed to a apt repo

3. The remainder of the POD’s software and configuration is primed from the
head-node

a.  Preserving consistent operation and deployment as well as a controlled versioning of
software elements

b.  Also makes POD self contained without the need of an internet connection

#OpenCORD
7

9 Steps to POD*

1.  Clone CORD Repository
git clone†

1.  Fetch Standard Images
./gradlew fetch‡

1.  Build Images‡

./gradlew buildImages

1.  Prime Seed Server*

./gradlew prime

1.  Publish Artifact to Seed Server
./gradlew publish‡

1.  Deploy PXE/DHCP/DNS
./gradlew deployBase*

1.  Deploy XOS
./gradlew deployPlatform*

1.  Turn up other resources
power on

1.  Verification(not yet implemented/
integrated)

./gradlew verify
† - git, ‡ - docker, * - ansible

#OpenCORD
8

And the * is because…..

Configuration of Virtual Tenant Networking is manual

Configuration of Fabric is manual

This one has a helper but it not yet automated

Configuration of Access Devices is manual

Configuration of vRouter is also a manual step.

Hopefully all this will be automated in future release

#OpenCORD
9

Automation µServices

#OpenCORD
10

Automated Testing

#OpenCORD
11

Automated Testing

#OpenCORD
12

Comprehensively Testing CORD

Subscriber : Tests channel zap time , channel surfing experience, join/leave functions and latency , join/jump
channel functions and latency, join/next channel functions and latency, duplicate joins , duplicate leaves,
emulates 100s/1000s of Channels and subscribers for TLS Authentication, DHCP address assignment and
subscriber traffic validation .

vRouter : Tests integration of Quagga container and ONOS vrouter app with multiple hosts. Tests different scales of
route entries getting synched from Quagga to onos and getting applied as flows. Validating flows passing
traffic.

TLS : It supports full fledged TLS client. Tests user traffic with AAA app using RADIUS server, TLS certificate
based authentication.

IGMP : Tests protocol level join, leave , query messages with different options.

DHCP Server/Relay : Tests expected functionality and stresses by assigning large number of ip addresses to
subscriber . It tests DHCP relay app with ISC dhcp server running outside in a container. It tests dhcp server
onos app also as per standards.

Flows : Tests all kinds of flows applied by ONOS to switch. It validates flow implementation of ONOS by passing
traffic to switch.

ProxyARP : Test proxy ARP in ONOS/CORD perspective . Validating flows passing traffic.

Part of the plan and in progress : Testing multiple reference point with GiG traffic . Testing end to end traffic with
vSG , XOS and ONOS , also on WAN side

#OpenCORD

Onboarding Services into CORD

Zack Williams

#OpenCORD
14

CORD Installation Process

1.  Nodes prepared (MAAS, or manual install)

2.  Prereqs installed with platform-install

3.  XOS services onboarded with service-profile

#OpenCORD
15

Single Node

#OpenCORD
16

Multi Node

#OpenCORD
17

Service Profiles

#OpenCORD
18

Service Dependency Graph

#OpenCORD
19

Synchronization Process

#OpenCORD
20

Anatomy of a Service Repository

Component Code Documentation

Onboarding Spec xos/*-onboard.yaml XOS

Data Model xos/models.py
Django, XOS

Admin GUI xos/admin.py

REST API xos/api/* Django REST framework, XOS

TOSCA API xos/tosca/* XOS

Synchronizer xos/synchronizer/* Ansible, XOS

ONOS App app/*, api/* ONOS

#OpenCORD

Controlling CORD
About GUI, REST APIs and TOSCA

Matteo Scandolo

#OpenCORD
22

Controlling CORD

Visual Feedback

Diagnostic

GUI

Integration with
other systems

External
applications

On the flight
configuration

REST APIs

System
bootstrapping

Service graph
definition

TOSCA

#OpenCORD
23

Graphical User Interface

Composed by two pieces:

Global Views

Powered by Django Admin

Core

Perform CRUD operations on CORE Models

Eg: Slices, Nodes, Networks, …

Services

Manage Services properties and related Tenants

Eg: vRouter, vSG, ...

Custom Dashboards

Angular JS - Single Page Applications

Combine different models to simplify the operator workflow

Eg: Diangostic, Truckroll, Topologies, ...

#OpenCORD
24

GUI Structure

UI_Bootstrap UI

Custom Views

Global Views

Service Views

Note that this
container is rebuilt
any time a Service
is onboarded

Core Views

#OpenCORD
25

Define a Service View

Service View lives in the service repository (xos/admin.py)

Define all the views that are needed by your service

class	VOLTServiceAdmin(ReadOnlyAwareAdmin):	

Register the view

admin.site.register(VOLTService,	VOLTServiceAdmin)	

Customize the service entry point with TOSCA

service#vtr:	
					type:	tosca.nodes.Service	
					properties:	
									view_url:	/admin/vtr/vtrservice/id/	

#OpenCORD
26

Service View Structure

Tenant View

View 1

Service View

View 2

View 3

Service Grid

Link to the TOSCA
Defined URL

Link to the all other
Service Views

#OpenCORD
27

Define a Custom View

Lives in the XOS Core (/views/ngXosViews/)

Loaded on demand

Take advantages of a UI Component Library (ngXosLib)

To create a new Custom View:

Create the application template

cd	/views/ngXosViews/	&&	yo	xos	
cd	<viewName>	&&	npm	start	

Develop your features

Build the application

cd	/views/ngXosViews/<viewName>/	
npm	run	build	

#OpenCORD
28

Custom Views Structure

/views/ngXosViews/<viewName> /xos/core/xoslib/static

Development Environment
●  Source Files
●  Dev Server
●  Test Runner
●  Handle different environment

CORD
POD

1

CORD
POD

2

CORD
POD

3

Build
Process

●  Minified JS
●  Template Chaching
●  Optimized CSS

#OpenCORD
29

What is ngXosLib?

A collection of UI Components:

Tables

Forms

Charts

…

Advantages:

Code Sharing

Fully tested

You can focus on features!

http://ngxoslib.wiki.opencord.org

#OpenCORD
30

REST APIs

Follows REST (Representational State Transfer) Architecture:

JSON

HTTP Statuses

Organized in four categories (prefixed by /api)

/core - Core models related API

/utility - Not related to a model, useful to manage the system

/service

/tenant

#OpenCORD
31

API Documentation

Located in /xos/tests/api

Use a Blueprint descriptive format (Markdown with custom syntax)

Published on docs.xos.apiary.io

Can be used as a mock backend for development

Used to generate API Tests (Dredd)

#OpenCORD
32

API Usage Examples

API are used for:

Custom Views

External Applications

Communication with services (eg: ONOS-CORD, ONOS-Fabric)

Usage examples:

https://github.com/opencord/xos/tree/master/xos/api/examples

#OpenCORD
33

TOSCA

Topology and Orchestration Specification for Cloud Applications

Used to describe:

Data Model

Services

Service Dependencies

Loaded in the system through a dedicated REST Endpoint (/api/utility/tosca/
run/)

Can be exported from the GUI

#OpenCORD
34

Thank you!

Questions?

