Bib ik
L

First CORD Release:

Building and Using CORD

#OpenCORD



David Bainbridge, Ali Al-Shabibi

Building a CORD POD

&
S0 o*

((/’ 3

#OpenCORD \\\/



Automation Concepts

Types of automation in CORD

- Deployment automation
- Going from bare metal to POD as easily as possible)
- Provides framework for CI/CD
- Operational automation
- Scaling POD resources (up/down) as they are plugged/unplugged
- Each component viewed as a Field Replaceable Unit (FRU)
- Test Automation

#0penCORD - Correctness testing during deployment and operation



Server Roles

Main POD
- self-sufficient
__ - surrogate for
remote PODs

Servers will fill typically either of these roles: Example:
Head node
Storage node
C-node: compute node for pure containers
V-node: OpenStack compute nodes (for
VMs)
Hybrid nodes may be supported too
Smaller PODs (micro and mini) may be headless:
controlled from a remote (shared) head
We will start with homogeneous server hardware tet
and will specialize based on operational
experience

Remote PODs

#OpenCORD



Software Layers

other use-case meta-modules...

M-CORD meta-module

E-CORD meta-module

R-CORD meta-module

Analytics infrastructure layer

r—r— 4
Local orchestration layer

OAM services/tools Iayefi
OpenStack layer OpenStack layer
X e——— ; T T

Storage layer ' ‘ \

1

Sérvioa fabric layer E

Physical fabric control

Basic infrastructure layer

Container infrastructure layer

Bootstrap layer

Example POD S N —————

#OpenCORD



Deployment Model

a. Ensures repeatability and consistency of experience across different environments

2. Artifacts are then published to the head-node
a. Docker artifacts are pushed to a docker registry
b. Maven artifacts are push to a maven repo

c. Software packages are pushed to a apt repo

3. The remainder of the POD’s software and configuration is primed from the
head-node

a. Preserving consistent operation and deployment as well as a controlled versioning of
software elements

#OpenCORD b. Also makes POD self contained without the need of an internet connection



9 Steps to POD*

1. Clone CORD Repository

et ' git clonef
o ‘?TT‘? ToR 1. Fetch Standard Images
== ‘ ./gradlew fetch?
NEO00000 M @@DDDDDDé'm 1. Build Imagest
LT ./gradlew buildImages
i 1 1. Prime Seed Server
ﬂmmmaééu‘s‘m‘? m@@@améém‘g&?‘; : ’
— ./gradlew prime
LS — 1. Publish Artifact to Seed Server
e Compute ./gradlew publish?
@@E ] e | (2] [aRE] (2] (2] Somms
e e || ’ 1. Deploy PXE/DHCP/DNS
Mm o3 m 0 | o1 | [82 m ./gradlew deployBase’
i - 1. Deploy XOS
————  Leaf - Spine Fabric ./gradlew deployPlatform’
e et 1. Turn up other resources

not current utilized power on

1. Veriﬁcation(not yet implemented/
integrated)

./gradlew verify 7
1 - git, 1 - docker, * - ansible

#OpenCORD



And the * is because.....

Configuration of Virtual Tenant Networking is manual

Configuration of Fabric is manual

This one has a helper but it not yet automated
Configuration of Access Devices is manual

Configuration of vRouter is also a manual step.

Hopefully all this will be automated in future release

#OpenCORD



Automation yServices

Legend

=3 Data pull
e Action invocation

Config Generator
<<docker>>

onos-fabric
<<docker>>

Based on configurable triggers, generate a leaf - spine fabric configuration and

MAAS
H'ITP DHCP [DNs

API
Provide DDNS capability for Automation Compute Hosts
GAPS in MAAS and CORD specific CNAMES through bare metal provisioning

DHCP Harvester Automation
<<docker>> <<docker>>
3 . After b | isioni
omve e scnes by Yot s GORD spcic povaony
SWItChq PrOVISI()ner Allocate IP addresses for the compute node
<<docker>> <<docker>> fabric interfaces. (future: replace with DHCP)
IP Allocator
<<docker>>
Fabric Config Consul
<<docker>> <<docker>>

h.

Persistence key / value store

update the onos fabric controller (generation available today, automation future)

#OpenCORD



Automated Testing

. o CORD Server
CORD tester implemented ° Q ° e
as a set of Test Apps (containers) Test App
deployed to one of the CORD vaollg alls allg o
pioy © s2ll8g|2gles — @
servers = = = =~
40 40
G G
Management / APl access
A 1G
Toemulate | CORD-based GPON Solution
RG traffic |
Tester switch I Mgmt. Fabric .
{media converter) L
CORD Fa//c
T CORD Tester
Reference points:
P CORD Server Ti - Internet direction
4 To - OLT mass traffic
Atk Tr - Residential GW flows
Tm - Management calls
< CORD Server Tt - Test control
S
]
10

#OpenCORD



Automated Testing

Test roles per reference point:

° Emulate a few residential gateways. Includes:
- Authentication, DHCP/DNS
- Multicast participation (channel surfing + receiving streams)
- Internet access

CORD Test Server

Q Emulate service management flows. Represents the
----------------------------------- centralized Orchestrator/Controller/OSS. Includes:
CORD Tester - Subscriber management

- Service instantiation

- Provide Radius test server

- Read service status

- Receive async events/callbacks (KPI, Alarms, etc.)

Test Runner

° Test-specific control of the infrastructure. Includes:
- Media converter management (VLANS)
- Any gray/white box probing (e.g., validation via flow entries and
flow counters, direct API access for low level functions, etc.)

_________________________________ ° Emulate mass OLT traffic to mimic 100s or 1000s of
subscribers. Includes:

- Mass Internet access

- Receive large number of multicast streams

[- Lots of concurrent multicast join requests]

I Test Heads / Drivers / Adapters
i ... all encapsulated as if coming from RGs via OLTs

20G 40G o Emulate the Metro network and the Internet. Includes:
°+ °+ ° ° o - Fine-grained flow emulation for few select subscribers
- Coarse-grained flow emulation for 100s/1000s of subscribers

- Provide multicast feeds

11
#OpenCORD



Comprehensively Testing CORD

Subscriber : Tests channel zap time , channel surfing experience, join/leave functions and latency , join/jump
channel functions and latency, join/next channel functions and latency, duplicate joins , duplicate leaves,

emulates 100s/1000s of Channels and subscribers for TLS Authentication, DHCP address assignment and
subscriber traffic validation .

VRouter : Tests integration of Quagga container and ONOS vrouter app with multiple hosts. Tests different scales of
route entries getting synched from Quagga to onos and getting applied as flows. Validating flows passing
traffic.

TLS : It supports full fledged TLS client. Tests user traffic with AAA app using RADIUS server, TLS certificate
based authentication.

IGMP : Tests protocol level join, leave , query messages with different options.
DHCP Server/Relay : Tests expected functionality and stresses by assigning large number of ip addresses to

subscriber . It tests DHCP relay app with ISC dhcp server running outside in a container. It tests dhcp server
onos app also as per standards.

Flows : Tests all kinds of flows applied by ONOS to switch. It validates flow implementation of ONOS by passing 12
#0penCORD ¢ 1o switch.



Zack Williams

Onboarding Services into CORD

&
S0 o*

((/’ 3

#OpenCORD \\\/



CORD Installation Process

1. Nodes prepared (MAAS, or manual install)

2. Preregs installed with platform-install

3. XOS services onboarded with service-profile

14
#OpenCORD



Single Node

Head Node (single node configuration) DNS || Package Cache
| KVM Virtualization
. | xos ONOS CORD Juju
Docker Docker OpenStack
| XOS Ul | ONOS | Keystone |
w/OpenCORD Apps 3
| XOS Database I | Ceilometer |
| XOS Onboarding Sync. | | Glance |
| XOS Service Sync. 1 I ONOS Fabric | Percona Cluster (MySQL) |
© | Neutron |
o) Docker :
o s | Nova Cloud Controller |
XOS Service Sync. N e | RabbitMQ |
| Nova Compute |

15
#OpenCORD



Multi Node

Head Node (mutti node configuration)

Package Cache I

KVM Virtualization
X0S

Docker

| X0S Ul |

| XOS Database |

| XOS Onboarding Sync. |

| XOS Service Sync. 1 |
O
O
O
XOS Service Sync. N

ONOS CORD Juju
Docker . OpenStack
ONOS | Keystone |
w/OpenCORD ]
Apps | Ceilometer |
| Glance |
ONOS Fabric | Percona Cluster (MySQL) |
| Neutron |
Docker
| Nova Cloud Controller |
o8 - RabbitMQ |

#OpenCORD

| DNS

Compute Node 1

| Nova Compute

O
O
O

Compute Node N

| Nova Compute

16



Service Profiles

Bootstrapped from ‘*platform-install® After *cord-pod-ansible* service profile
XOS VM XOS VM
Docker Docker
XOS Bootstrapping UI/API XOS Bootstrapping UI/API
XOS Database XOS Database
XOS OpenStack Synchronizer XOS OpenStack Synchronizer
XOS Onboarding Synchronizer XOS Onboarding Synchronizer

Created by Onboarding Synchronizer

XOS Ul
VTN Synchronizer VSG Synchronizer
OLT Synchronizer ONOS Synchronizer
Fabric Synchronizer ExampleService Sync.

1
#OpenCORD !



Service Dependency Graph

ExampleService

Network

OS Images,
VM Instances

OS Images, Routing,
VM Instances Configuration

'

OpenStack

18
#OpenCORD



Synchronization Process

Change Requests via Web Ul, API, or TOSCA
Upstream
/ Networks

XOS VM / ONOS CORD

XOS Ul |_Configures —5| ONOS w/OpenCORD Apps F5— Configures

ONOS Synchronizer — 1

OpenStack Synchronizer [~ ISy :
: OpenStack Compute :

\ VSG VM Instance

Installs/Configures

Creates

VSG Synchronizer —

(@©

> ONOS, VSG Config.

Creates

|
Installs/ Configures\i. ExampleService VM Instance

Web Server

ExampleService Synchronizer

|

#OpenCORD



Anatomy of a Service Repository

Component Code Documentation
Onboarding Spec xos/*-onboard.yaml XO0S
Data Model xos/models.py
Django, XOS
Admin GUI xos/admin.py
REST API xos/api/* Django REST framework, XOS
TOSCA API xos/tosca/* XOS
Synchronizer xos/synchronizer/* Ansible, XOS
ONOS App app/*, api/* ONOS

20
#OpenCORD



Matteo Scandolo

Controlling CORD

About GUI, REST APIs and TOSCA

&

¢

#0penCORD V4



Controlling CORD

GUI REST APIs TOSCA

Integration with
other systems

System
Visual Feedback External bootstrapping
Diagnostic applications Service graph
On the flight definition
configuration

22
#OpenCORD



Graphical User Interface

Composed by two pieces:

Global Views
Powered by Django Admin
Core
Perform CRUD operations on CORE Models
Eg: Slices, Nodes, Networks, ...
Services
Manage Services properties and related Tenants

Eg: vRouter, vSG, ... 23
#OpenCORD



GUI Structure

ANGULARIS

#OpenCORD

Global Views

Service Views

L1

Note that this
container is rebuilt
any time a Service
is onboarded

24



Define a Service View

Service View lives in the service repository (xos/admin.py)

Define all the views that are needed by your service

class VOLTServiceAdmin(ReadOnlyAwareAdmin):

Register the view

admin.site.register(VOLTService, VOLTServiceAdmin)

Customize the service entry point with TOSCA

service#vtr:
type: tosca.nodes.Service
properties:
view url: /admin/vtr/vtrservice/$id$/

25
#OpenCORD



Service View Structure

Tenant View
Link to the all other .
Service Views View 1
| Service View
Link to the TOSCA View 2
Defined URL
View 3

26
#OpenCORD



Define a Custom View

Lives in the XOS Core (/views/ngXosViews/)

Loaded on demand

Take advantages of a Ul Component Library (ngXosLib)
To create a new Custom View:

Create the application template

cd /views/ngXosViews/ && yo xos
cd <viewName> && npm start

Develop your features

Build the application

cd /views/ngXosViews/<viewName>/ 27

#0OpenCORD nom run build



Custom Views Structure

Development Environment e Minified JS
e Source Files e Template Chaching
e Dev Server e Optimized CSS

e Test Runner
e Handle different environment

28
#OpenCORD




What is ngXosLib?

A collection of Ul Components:
Tables
Forms

Charts

Advantages:
Code Sharing

Fully tested 29
#OpenCORD



REST APIs \

Follows REST (Representational State Transfer) Architecture:
JSON
HTTP Statuses

Organized in four categories (prefixed by /api)
/core - Core models related API
/utility - Not related to a model, useful to manage the system
/service

/tenant %
#OpenCORD



APl Documentation

Located in /xos/tests/api
Use a Blueprint descriptive format (Markdown with custom syntax)

Published on docs.xos.apiary.io

Can be used as a mock backend for development

Used to generate API Tests (Dredd)

31
#OpenCORD



APl Usage Examples

API are used for:

Custom Views

External Applications

Communication with services (eg: ONOS-CORD, ONOS-Fabric)
Usage examples:

https://github.com/opencord/xos/tree/master/xos/api/examples

32
#OpenCORD



TOSCA \

Topology and Orchestration Specification for Cloud Applications
Used to describe:

Data Model

Services

Service Dependencies

Loaded in the system through a dedicated REST Endpoint (/api/utility/tosca/
run/)

Can be exported from the GUI
#OpenCORD

33



Thank you!

Questions?

34
#OpenCORD



