
Mobile-CORD Plans for 2H 2016

M-CORD Focus Areas

Mobility Technology Trends

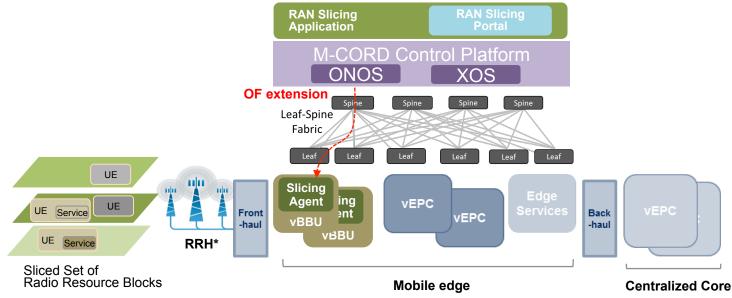
RAN Slicing

- Policy driven Time, Location, UE category, Service, etc.
- Resource management and isolation between slices
- Front-haul slicing based on simple tag such as VLAN
- Support for Multi-RATs

Observability and Analytics

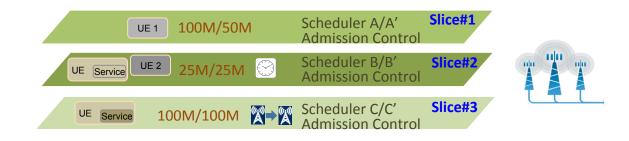
- Integration with A-CORD
- Real-time Smart Probes
- Closed loop analytics apps
- Example use cases: Open SON (self-organizing network), root cause analysis

Flexible Disaggregation – a stretch goal


- Vertical- Split architecture depending on front-haul and latency requirement
- Horizontal– Control-plane / Data-plane

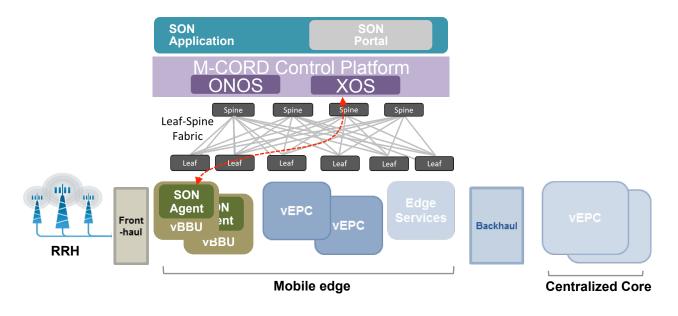
RAN Slicing: Implementation

- vBBU* assigns & manages radio resource blocks to different slices under the control of the slicing app
- ONOS slicing app talks to RAN agent/vBBU through proposed OF-extensions
- Slicing app or portal can take policies based on UE, time, location and/or services to create slices
- Service classification is implemented by UE and/or BBU using tagging (e.g., network cookies)

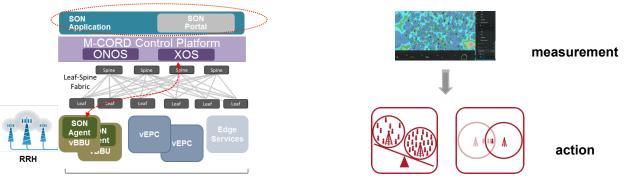


BBU ≈ Central Unit, RRH ≈ Remote Unit

Different UEs and Services experience different QoS based on the slice policy


- Senario1: UE based slicing
 - VIP UE 1 belongs to slice#1 and served with reserved 100Mbps/50Mbps for DL/UL
 - Normal UE 2 belongs to slice#2 and served with limited speed of 25M/25M for DL/DL during peak time, 5-7 pm
- Scenario2: Application based slicing
 - When a UE, whose price plan is basic, uses s video streaming application, the flow is assigned to slice#2 with limited bandwidth
 - When the same UE uses m-Health application, flow is assigned to slice#3 and can be served with high bandwidth and with slow triggered handover control

¹ Observability and Analytics: Implementation


- Integration with A-CORD
- SON as a A-CORD service
 - Closed loop control with 'measurement and action'
 - Measurement examples: power level, CQI (Channel Quality Indicator)
 - Action examples: adjust power, instantiate a new BBU (that is a new cell for more capacity)

Observability and Analytics: PoC

- SON application collects RAN information and triggers management actions through M-CORD platform
- Emulate congestion in one cell, SON recognizes this situation
- Take actions such as:
 - Load balance among existing cells and optimize performance for UEs
 - Instantiate a new vBBU on-demand (a new cell) and load-balance

Mobile edge

Disaggregated and Virtualized EPC

Core Slicing

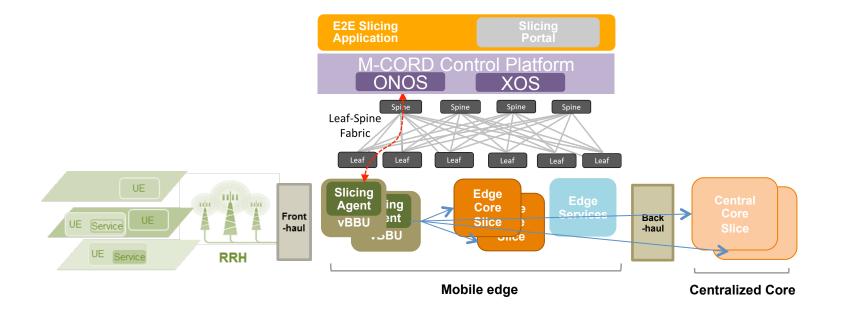
- Flexible allocation of VMs of EPC components and Service functions to slices
- Slicing includes both control-plane and data-plane
- Isolation, QoS, customized security per slices

※ Coordinated with RAN and Fabric slicing (E2E slicing)

Observability and Analytics

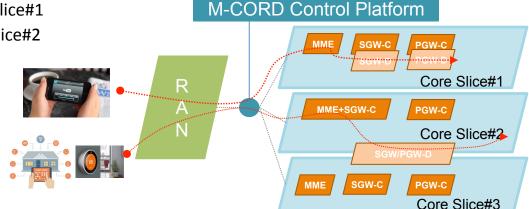
- Integration with A-CORD
- Observe Slice utilization, EPC VMs resource utilization
- Closed Loop Analytics Apps
- Example Use Cases: active testing, dynamic resource allocation for slices

Connectionless


- Non-GTP based data forwarding model
- Initial focus on static IoT devices, potential future support for mobility
- ※ Connectionless model also include RAN side
- Seek and integrate Open EPC building blocks

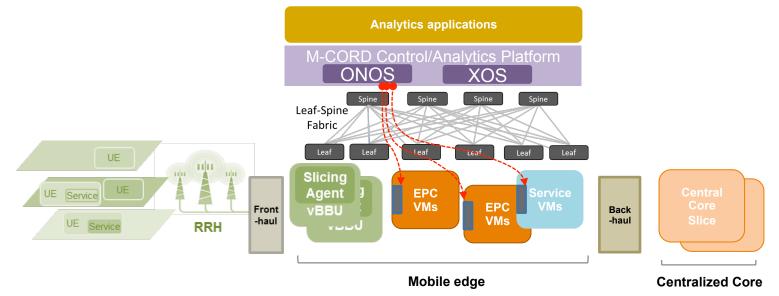
Core Slicing: Implementation

- Dynamic assignment of EPC resources (e.g. MME, SGW-C, PGW-C, SGW-D, PGW-D...) to slices
- Resources can be dedicated or shared between slices
- vBBU gets slice information from slicing app to select appropriate core slice for incoming packets



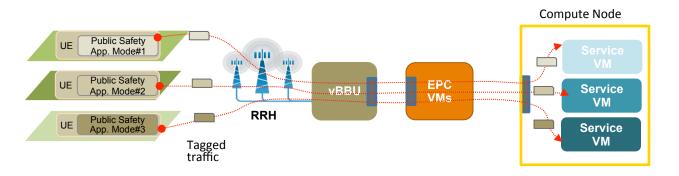
Core Slicing: PoC

Show setting up slices with flexible combinations of EPC VMs The slicing app directs UE traffic flow from RAN to desired core slices


- Set up core slices
 - Slice#1: dedicated MME, SGW-C/D, PGW-C/D suitable for huge data traffic
 - Slice#2: MME + SGW-C, PGW-C and SGW/PGW-D shared with slice#3 suitable for low traffic with low mobility
 - Slice#3: MME, SGW-C, PGW-C and SGW/PGW-D shared with slice#2 suitable for low traffic with low mobility
- Core slice assignment for different UEs
 - UE①, heavy video user, is assigned to slice#1
 - UE⁽²⁾, home IoT device, is assigned to slice#2

Observability and Analytics: Implementation

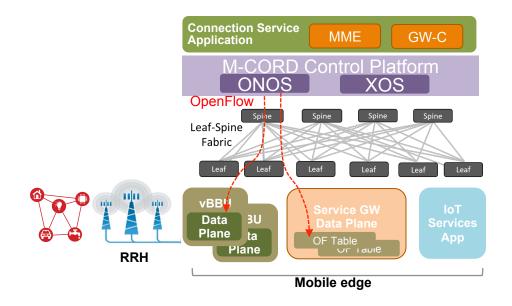
- Integration with A-CORD
 - Monitoring as a Service, Active Test as a Service
- Implement programmable Smart Probe in EPC VMs
 - Measure/Identify examples: inter arrival time of data and signaling traffic, jitter, etc.
 - Control: instantiate new SGW-C, SGW-D, PGW-C, PGW-D when needed
- Through header based classification and DPI, enable application based slicing



² Observability and Analytics: PoC

Show traffic analysis agent can do QoE analysis in a slice Show service based Core slicing

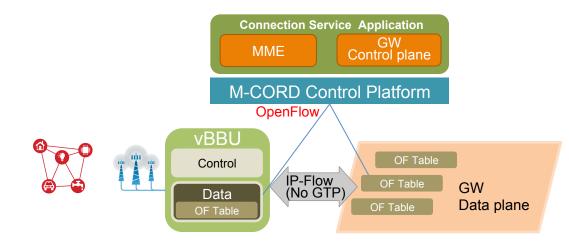
- Test agent analyzes QoE & QoS in a slice and trigger new PGW-D VM to handle increased traffic when needed
- Through DPI at 'Smart Probe', enable application based slicing
 - Smart Probe classifies type of application and adds tag to each packet
 - Smart Probe at the other side of network distribute each packet to designated VMs based on tag information
 - Examples : m-Health application, public safety application



Smart Probe

² Connectionless: Implementation

- Disaggregated eNB/SGW/PGW functionalities to enable a centralized application to manage new (non-GTP) data plane
- vBBU data plane and service gateway data plane are controlled by ONOS and apps
- Get rid of GTP tunnels, replace with OF rules in data path element in a proactive way



Ċ.

Static and cellular IoT Devices are serviced by Non-GTP based network.

- Show there is no MME, SGW, PGW
 - Instead, includes SDN controllable Service GW Data plane and Service application
- Cellular static IoT devices are connected to and served by the new network
 - Emulate hundreds or thousands of IoT device traffic
 - Show OF table set up inside vBBU and GW data plane

Mobile Edge Services

CDN

- AR/VR
- Public safety
- m-Health

- Take advantages of
 - Proximity (Mobile Edge)
 - RAN/Core slicing
 - Resource management
 - Tagging mechanism
 - Service steering

Implementation and PoC

Backup / TBD

CDN

- Support serving locally cached CDN content for better QoE
- Support CDN data traffic demand by scaling EPC components
- Utilize Slicing to provide policy-based QoE
 - PoC benefits of EPC scaling for CDN application

AR/VR

- Support customized Augmented Reality and/or Virtual Reality services in a targeted area
- Utilize Slicing to meet the high throughput requirement
- Examples : AR Gaming, VR museum
 - Solution partners are TBD

• PoC AR/VR applications with enhanced QoE

Public Safety

- - Free cellular access in case of "panic" mode
 - SLA and QoS for non-panic mode
- Implement steering mechanism to forward the emergency traffic to the appropriate destination (such as police, fire station)

```
Provide free xpose service for panic mode
Forward fire event to the fire station
```

- Utilize RAN Slicing to support priority by dedicating resources for critical m-Health application
- Examples : Remote medical treatment app.
 - Solution partner is TBD

PoC an m-Health app. running with stable QoS under congestion situation

M-CORD Lite

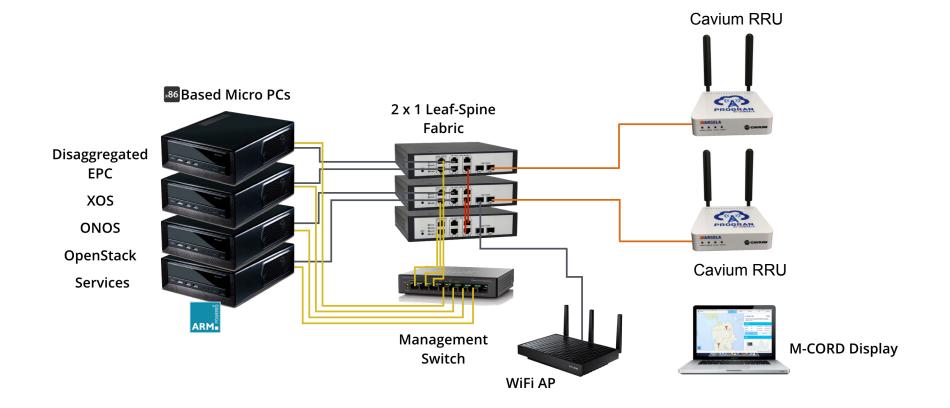
Goals, Functionalities, Packaging

Rite.

Goals

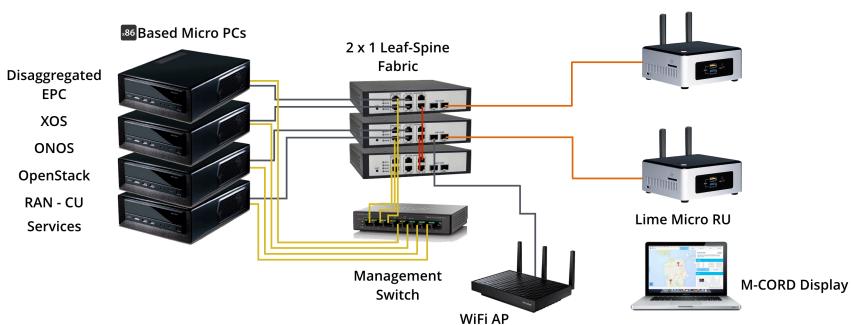
- Build a portable, inexpensive, & easy to replicate M-CORD for development, experimentation, demonstration
- To enable experimental deployments in support of acceleration of 5G

Functionalities


- Disaggregated, virtualized, sliceable RAN
- Disaggregated, virtualized, sliceable EPC
- Mobile Edge Applications

Packaging and Form factors

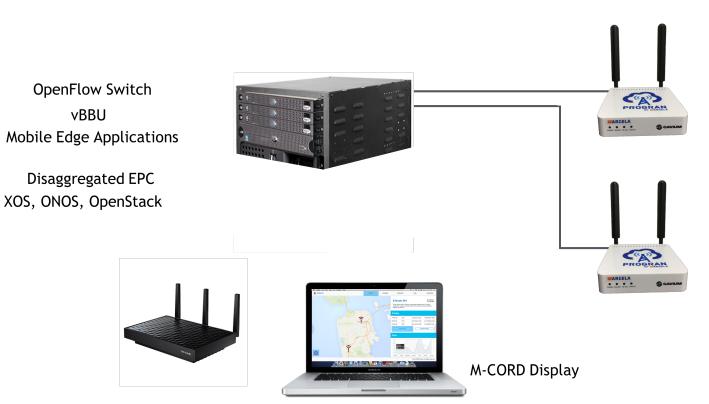
- No more than quarter racks or desktop environment
- Run on standard power
- Appropriate for office environment
- Desirable cost 10k 20k
- Should support 16-32 UEs


- ONOS, XOS, Openstack/Docker
- OpenFlow enabled networking

Solution Candidate (1)

Ċ,

Solution Candidate (2)



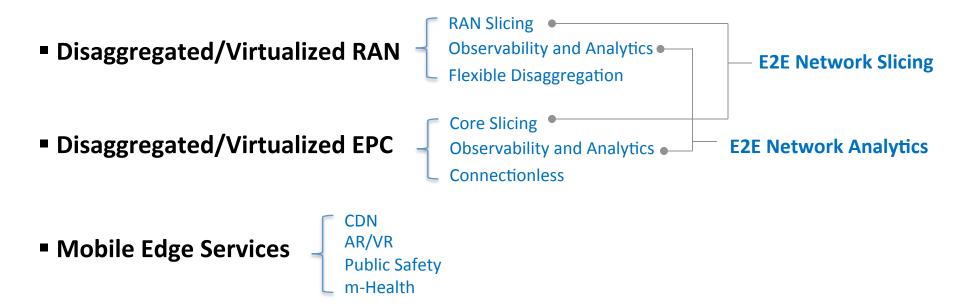
Lime Micro RU

M-CORD in Portable Rack

M-CORD Implementation Options

	M-CORD Lite		M-CORD Rack	
ТҮРЕ	with Cavium	with Intel	Portable Rack (6/8U)	Carrier Grade full rack
CONNECTIVITY	1 OpenFlow Switch	1 OpenFlow Switch	3 COTS, Leaf & Spine switches	Carrier Grad, Leaf & Spine
# OF SERVERS	3 x86 + 1 ARM	4 x 86	4 x86 + 1 ARM	5 x86 + 1 ARM
CPU	16-core Intel, 4 core ARM	16-core Intel	24-core Intel, 48 core ARM	24-core Intel, 48 core ARM
RAN	Cavium vBBU + RRH	Intel vBBU + USRP RRH(or Lime)	Cavium vBBU + RRH or Intel vBBU + USRP RRH(or Lime)	
EPC	Quortus	?	Netcracker, Radisys, Quortus vEPC	Netcracker, Radisys, vEPC
UE CAPACITY	16 UEs per RRH	?	16 UEs per RRH	16 UEs per RRH
# OF eNBs	Small	Small	Medium	Large
Power consumption	150 W X 5 = 750 W	150 W X 5 = 750 W	1000 W * 8 = 8 KW	~14-20 kW
Weight	6 x 5 = 30 lbs	6 x 5 = 30 lbs	~300 lbs	
Size	(3.8"*5) 19" x 8.7" x 12.9"	(3.8"*5) 19" x 8.7" x 12.9"	17.3" x 25.6" x 37.7" (6U Box)	14~18U
Features	Virtualization, Disaggregation, Slicing	Virtualization, Disaggregation, Connectionless, Slicing (?)	Virtualization, Disaggregation, Slicing, Multi-RAT	Virtualization, Disaggregation, Slicing, Multi-RAT
Apps.	Streaming, IoT, AR/VR	IoT, Streaming, AR/VR	IoT, Streaming, AR/VR	IoT, Streaming, AR/VR
Approximate Cost	10-20 K	10-20 K	~40 К	

Software on M-CORD Lite Platform



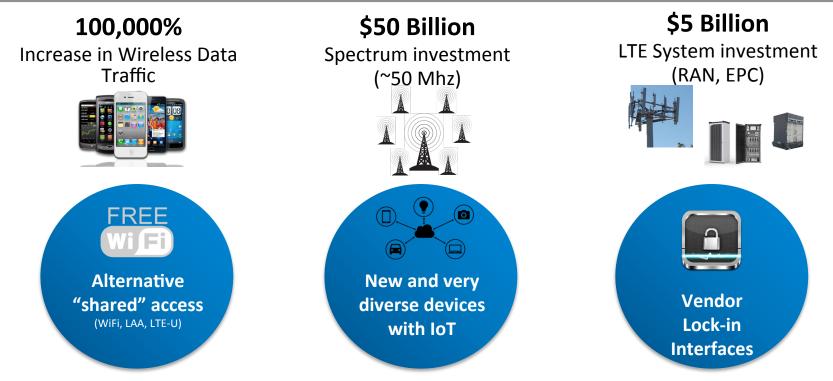
- Consensus on M-CORD Lite platform Align with CORD
- Acquire H/W \rightarrow Assemble \rightarrow Test
- Create the Software Stacks (Standard CORD Stack + RAN + EPC)

	Components providers	Services	Timeline
Plan 1	Cavium, Argela, Quortus	Example ONS Services	1 st PoC in Oct.
Plan 2	Radisys, Intel, Argela,	Example ONS Services	TBD

Summary

• M-CORD Lite - Agile development, experimentation, PoCnstration

Backups


Mobile-CORD Explore 5G

ONOS/CORD Partnership http://opencord.org/

M-CORD Drivers = Operator Challenges

In the last 5 years

Slowing revenue growth

M-CORD Drivers: Proprietary to Open

State of the infrastructure: Built with closed proprietary boxes

- Inefficient utilization including sub-optimal use of precious radio resources
- Inability to customize for various customers
- Slow in creating innovative services
- Cannot support industry-specific IoT scenarios

Mobile infrastructure needs re-architecting

About M-CORD

Mobile CO Re-architected as DC

- Economics of DC
 - \checkmark Infrastructure mainly built with commodity H/W and white-boxes
- Agility of a Cloud provider
 - \checkmark Software platform that enable rapid creation of new services

Mobile Edge

- Provide services at the edge of network to leverage the Benefits of;
 - ✓ Proximity to Users
 - \checkmark Reduced latency, Reduced backhaul load
 - ✓ Utilizing information related to Radio Resource
- Micro-services
 - Provide services and infrastructure well suited for the targeted enterprise;
 - ✓ Lightweight platform on-demand
 - \checkmark Independency and autonomous control in accordance with centralized orchestration
 - ✓ Enterprise specific SLA

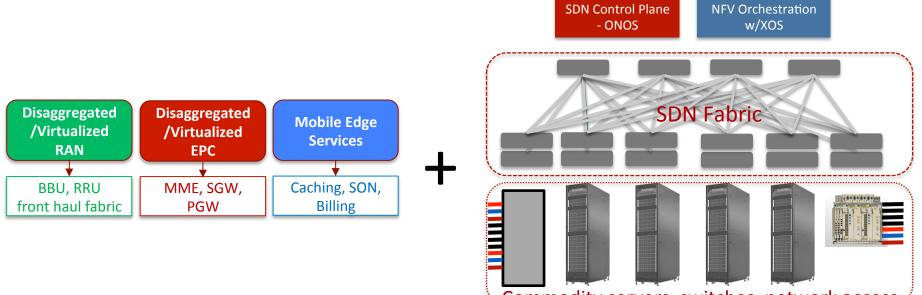
M-CORD Guiding concepts

- SDN/NFV
- Open source
- Open interfaces (RAN/Core)
- Open platforms
- Commodity hardware
- Programmability
- Observability
- Service assurance, Performance
- Coexistence with existing infrastructure

Capabilities to be Explored on M-CORD

\checkmark Enhance resource utilization

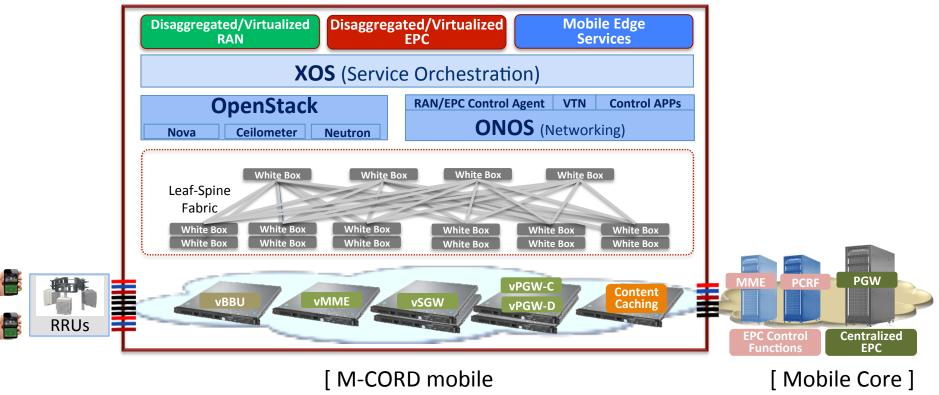
- Real-time resource management
- Exploit multiple Radio Access Technologies
- Real-time analytics framework

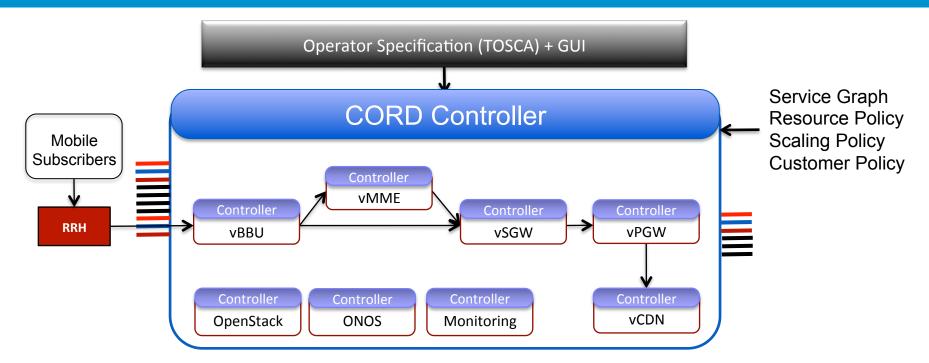

✓ Provide customized services and better QoE to customers

- Customized service composition
- Differentiated QoE based on service requirements: latency and throughput
- Enable use cases: IOT, smart cities, hospital, education, industrial M2M apps

✓ Agile and cost-efficient deployment

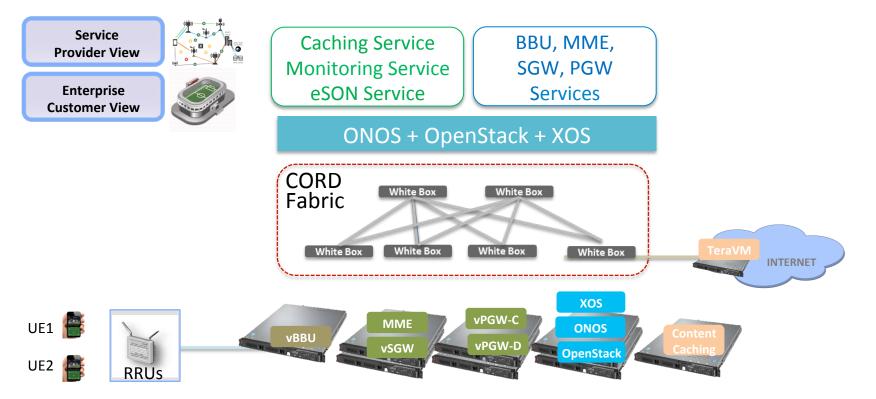
- On-demand deployment
- Virtualized /disaggregated RAN and EPC
- Commodity H/W and open source


M-CORD: Mobility Technology Trends + COR

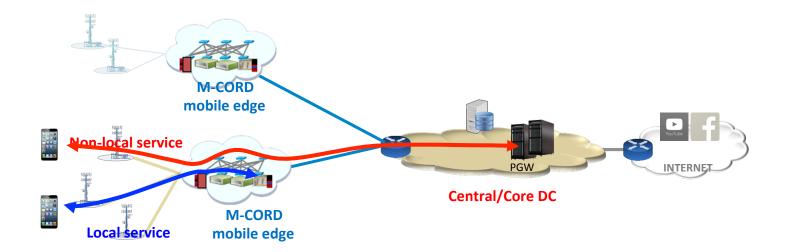

Commodity servers, switches, network access

M-CORD: A Platform for 5G Exploration

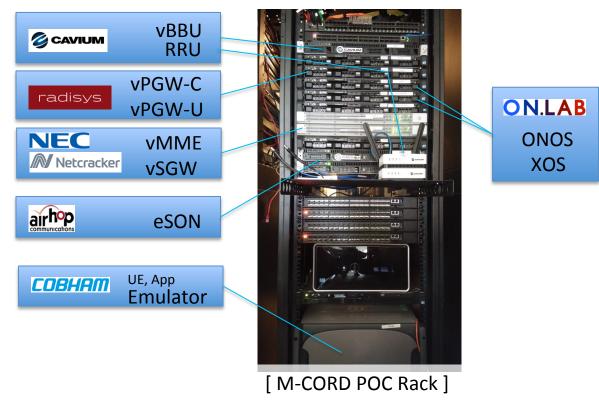
M-CORD Architecture Framework



M-CORD Software Architecture


- *Mobility Functions modeled as XOS services*
- Utilizes XOS service composition

Mobile CORD POC (March 2016)


Commodity Servers, Storage, Switches, and I/O

M-CORD Service example: Video from the Edge

- Local service : UE1 → vBBU → vSGW → local-PGW
- Non-local Service : UE2 -> vBBU -> vSGW -> global-PGW

M-CORD PoC: Infrastructure & Collaborators

RRU: Remote Radio Unit, (v-: virtualized), vBBU: Baseband Unit, vMME: Mobility Management Entity, vSGW: Serving Gateway, vPGW-C/D: PDN Gateway Control plane/Data plane, SON: Self Organizing Network