
#OpenCORD

M-CORD		
Vendor	Independent	Accelera5on	as	a	

Service	(XaaS)	
Nic	Viljoen	

The Problem

●  The drive for vendor independence is causing a shift to the use of COTS equipment within the
carrier data center
○  This is the driver that has led to the disaggregation of software and hardware solutions

●  However due to some disruption in Moore’s Law (as stated by Intel) the CPU is not scaling to
the next generation of workloads
○  Jon Donovan of AT&T estimated traffic passing through their network has increased by 150,000% in

the last 9 years
○  CPU has not scaled at the same rate, as Intel recently said within the MIT technology review, Moore’s

Law is breaking down

●  This means that acceleration agents are required
○  However, the previous generation of ASIC-based acceleration does not fit the software-defined model
○  This is why networking is now being driven to a similar co-processing model such as graphics

●  This however means that the issue of vendor independence returns
○  If vendors are supplying proprietary software to enable the use of their own server accelerators then we

are back to proprietary systems
○  This is the key problem that accelerators need to solve

●  How can we create a system whereby acceleration hardware and software are disaggregated?

What is required for vendor independence?

●  The acceleration device should be easily replaceable
○  If an accelerator is placed directly on the motherboard then once

again the server is no longer COTS and vendor lock in is once
again present

○  Implement as server-based NIC

●  The software written should work (relatively) seamlessly across
different accelerators
○  Software should be fully portable, to ensure plug and play

functionality is not impaired

●  The software written should perform without any added hardware
acceleration
○  This requires a model which allows for acceleration both in CPU

or with hardware acceleration

vSwitch Acceleration
➢  vSwitch acceleration is an early

production ready case of attempting
transparent offload

●  OVS/vRouter is a great example of the

benefits of Acceleration as a service
○  Kernel OVS < 10 Mpps using ~10 cores for

processing
○  DPDK ~12 Mpps using 10-14 for processing
○  SmartNIC ~30Mpps using 1 core (NFP)

●  By offloading the fast path, but
maintaining fallback to kernel and
Userspace offload ensures
transparency
○  Can be used with various NIC vendors

●  Finally, if offload is removed, the OVS
will simply run on the kernel
○  This means acceleration vendors will never be

able to ‘trap’ their customers

SmartNIC	

OpenFlow NetConf

vOLT Control App

OVS	Userspace	(ovs-
vswitchd)	

OVS	Datapath	
(kernel)	

Kernel Hooks

User

Kernel

NIC

General Software Acceleration-eBPF/XDP
➢  There already exists a framework within the Kernel to

accelerate software
➢  The development of the XDP variant of eBPF now

means this is compatible with DPDK and other bypass
infrastructures as well as the kernel data path

●  eBPF programs are small contained C programs

○  10 64 bit registers, 512 byte stack, infinite map storage
○  Limited jump backs-no infinite loops
○  4K instructions
○  can be chained using tail calls with other eBPF programs

●  These were previously limited for use with the traffic
classifier in the kernel
○  TC provides simple match/action framework to filter packets and use

eBPF programs
○  However only available if using kernel stack (i.e not DPDK)

●  However the advent of XDP (eXpress Data Path) is
aiming to enable these programs to be deployed more
flexibly
○  Using ‘driver space’/bare metal to host eBPF programs means that they

can be used with DPDK etc.
●  This then allows VNF providers a method whereby they

can produce programs that are high performance which
can be transparently accelerated
○  Thereby we have achieved our aim of totally transparent general offload
○  Also means the through trusted executions environments (TEE)

carriers will be able to drive their own innovation

eBPF

XDP (Bare Metal eBPF)

Map
(Data Structure

used to
Interact

between eBPF
program and
user space
programs)

VNF 1
(DPDK+XDP)
acceleratio

n)

VNF 2
(vProbe) VNF 3

TC

IP Tables

SK_Buffs

‘Driver
Space’

Kernel

User Space

SmartNIC	
NIC Offload eBPF Programs using Hooks

Compute Node

Pulling it all together-Programming Model

SmartNIC

Deliver to Host

Update Stats

OVS Datapath
(SmartNIC)

OVS Userspace
(ovs-vswitchd)

OVS Datapath
(Kernel)

VM VM

Monitoring-as-a-
Service XOS+ONOS

Analytics
Engines

P4 Open
Flow

vProbe

vProbeApp

Activate pre-defined
vProbe for selective

flows
Activate

vProbe for
given flows

vProbe

SmartNIC Accelerates the
Kernel Path

User Space

Kernel Space

QoS
Check

s1
Active
Test

Monitor
SLA

Check
s1

Basic
DPI

eBPF IR

P4

C

Basic
DPI

SLA
Check

s2

QoS
Check

SLA
Check

s1

DDoS
Check

Deliver to Host

Update Stats
Dynamic

Match/Action

vProbe
Primitives

Mirror
Packet

s
INT

Endpoin
t User Configures

Chain of Primitives in
vProbe

OpenFlow custom action
can be used to identify
which flows to send to

vProbe

Example
Configuration

OVS Datapath

Kernel Hooks to
SmartNIC
(optional)

Kernel

User Space

vProbe
Maps

VNF

Summary

•  Using the eBPF/XDP model of general acceleration ensures cross
platform acceleration that enables both vendor independence and
performance

•  Ensures full exploitation of hardware

•  Ensures software/hardware combinations can be chosen through ‘plug and play’ approach

•  Opens up new opportunities for innovation in hardware and software

•  Reduces the risk taken by end users when experimenting with innovative solutions

•  Enables an increase in the speed of end user experience improvement

