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The Problem 

●  The drive for vendor independence is causing a shift to the use of COTS equipment within the 
carrier data center 
○  This is the driver that has led to the disaggregation of software and hardware solutions 

●  However due to some disruption in Moore’s Law (as stated by Intel) the CPU is not scaling to 
the next generation of workloads 
○  Jon Donovan of AT&T estimated traffic passing through their network has increased by 150,000% in 

the last 9 years 
○  CPU has not scaled at the same rate, as Intel recently said within the MIT technology review, Moore’s 

Law is breaking down 

●  This means that acceleration agents are required 
○  However, the previous generation of ASIC-based acceleration does not fit the software-defined model 
○  This is why networking is now being driven to a similar co-processing model such as graphics 

●  This however means that the issue of vendor independence returns 
○  If vendors are supplying proprietary software to enable the use of their own server accelerators then we 

are back to proprietary systems 
○  This is the key problem that accelerators need to solve 

●  How can we create a system whereby acceleration hardware and software are disaggregated? 



What is required for vendor independence? 

●  The acceleration device should be easily replaceable 
○  If an accelerator is placed directly on the motherboard then once 

again the server is no longer COTS and vendor lock in is once 
again present 

○  Implement as server-based NIC 

●  The software written should work (relatively) seamlessly across 
different accelerators 
○  Software should be fully portable, to ensure plug and play 

functionality is not impaired 

●  The software written should perform without any added hardware 
acceleration 
○  This requires a model which allows for acceleration both in CPU 

or with hardware acceleration 



vSwitch Acceleration 
➢  vSwitch acceleration is an early 

production ready case of attempting 
transparent offload 

 
●  OVS/vRouter is a great example of the 

benefits of Acceleration as a service 
○  Kernel OVS < 10 Mpps using ~10 cores for 

processing 
○  DPDK ~12 Mpps using 10-14 for processing 
○  SmartNIC ~30Mpps using 1 core (NFP) 

●  By offloading the fast path, but 
maintaining fallback to kernel and 
Userspace offload ensures 
transparency 
○  Can be used with various NIC vendors 

●  Finally, if offload is removed, the OVS 
will simply run on the kernel 
○  This means acceleration vendors will never be 

able to ‘trap’ their customers 
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General Software Acceleration-eBPF/XDP 
➢  There already exists a framework within the Kernel to 

accelerate software 
➢  The development of the XDP variant of eBPF now 

means this is compatible with DPDK and other bypass 
infrastructures as well as the kernel data path 

 
●  eBPF programs are small contained C programs 

○  10 64 bit registers, 512 byte stack, infinite map storage  
○  Limited jump backs-no infinite loops 
○  4K instructions 
○  can be chained using tail calls with other eBPF programs 

●  These were previously limited for use with the traffic 
classifier in the kernel 
○  TC provides simple match/action framework to filter packets and use 

eBPF programs 
○  However only available if using kernel stack (i.e not DPDK) 

●  However the advent of XDP (eXpress Data Path) is 
aiming to enable these programs to be deployed more 
flexibly 
○  Using ‘driver space’/bare metal to host eBPF programs means that they 

can be used with DPDK etc. 
●  This then allows VNF providers a method whereby they 

can produce programs that are high performance which 
can be transparently accelerated 
○  Thereby we have achieved our aim of totally transparent general offload 
○  Also means the through trusted executions environments (TEE) 

carriers will be able to drive their own innovation  
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Pulling it all together-Programming Model 
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Summary 

•  Using the eBPF/XDP model of general acceleration ensures cross 
platform acceleration that enables both vendor independence and 
performance 

•  Ensures full exploitation of hardware 

•  Ensures software/hardware combinations can be chosen through ‘plug and play’ approach 

•  Opens up new opportunities for innovation in hardware and software 

•  Reduces the risk taken by end users when experimenting with innovative solutions 

•  Enables an increase in the speed of end user experience improvement 


