

Mobile-CORD Enable 5G

ONOS/CORD Collaboration http://opencord.org/

M-CORD Drivers = Operator Challenges

In the last 5 years

Flattening Revenue

Today's infrastructure: Built with closed proprietary boxes

Leading to:

- Inefficient utilization of network resources including sub-optimal use of precious spectrum
- Inability to customize for various customers, or locations
- Slow in creating new innovative services
- For example, today it is hard to support industry-specific IoT solutions

Mobile infrastructure needs re-architecting

Capabilities to be Explored on M-CORD

$\checkmark\,$ Enhance resource utilization

- Real-time resource management
- Exploit multiple Radio Access Technologies
- Real-time analytics framework

✓ Provides increased Programmability & QoE

- Customized service composition
- Differentiated QoE based on service requirements: latency and throughput
- Enable use cases: IOT, smart cities, hospital, education, industrial M2M apps

✓ Provides a platform for cost-efficient deployment of Services

- Agile and on on-demand deployment models
- Virtualized /disaggregated RAN and EPC
- Based on commodity H/W and open source solutions

M-CORD: Mobility Technology Trends + CORD

M-CORD: A Platform for 5G Exploration

M-CORD Architecture

edge]

M-CORD Software Architecture

- *Mobility Functions modeled as XOS services*
- Utilizes XOS Service composition

Commodity Servers, Storage, Switches, and I/O

M-CORD Service example: Video from the Edge

- Local service : UE1 → vBBU → vSGW → local-PGW
- Non-local Service : UE2 -> vBBU -> vSGW -> global-PGW

M-CORD ONS 2016 PoC Infrastructure & Collaborators

Factors contributing to our success

- Community Interest & Engagement
- Focused effort
- Willingness to take risk

Current Work Highlights

- RAN Slicing
 - Integration of Argela UE based slicing into CORD
- HSS (Home Subscriber Server) integration
 - Moved from emulated to real HSS, and integrated with CORD
- SON(Self-Organizing Networks)
 - Upgraded the SON portal and integrating with A-CORD
- Packaging of vPGW, vSGW as XOS services
 - vPGW is completed
 - vSGW is in progress

Current Work Highlights

- Fabric integration
 - VLAN to VXLAN conversion for some EPC components in progress
- End to end testing of M-CORD POD
 - End to end function testing framework with Cobham UE emulator
 - Automatic test with Jenkins is in progress

M-CORD Roadmap

Ø.

- RAN Slicing
- CORE Slicing
- Observability and Analytics
- Connectionless
- M-CORD Lite
- New Applications & Services

Learn more at the M-CORD Breakout Session

Summary

- M-CORD is all about enabling innovations by all
- Create Open Reference Platform for 5G exploration
- Our goal is to create 10s of M-CORD PODs around the globe for development, testing and experimentation
- Join us @ the breakout session to plan future of M-CORD

ThankYou to all the existing collaborator! (Cavium, Radisys, Airhop, NEC/Netcracker, Cobham) Welcome new collaborators: Intel, Argela, Quortus, Tech-Mahindra, Viavi, Netronome, Lime-Micro