

TRELLIS

CORD Network Infrastructure

Saurav Das

... with Ali Al-Shabibi, Jonathan Hart, Hyunsun Moon, Charles Chan & Flavio Castro

#OpenCORD

What is Trellis?

Unique combination of these three components

Trellis Benefits

Common control over underlay & overlay networks enable simple, efficient impls of:

- Distributed Virtual Routing for tenant networks
- Optimized delivery of multicast traffic streams
- and many more optimizations & new capabilities to be introduced in the near future

Trellis is the enabling Network Infrastructure for CORD

CORD Architecture

Outline

Underlay Fabric

- Bare-metal + Open-source = White-Box
- L2/L3 Leaf-Spine with SDN Control

Virtual Network Overlay

- OVS and VXLAN with SDN Control
- Service chaining

vRouter

- Distributed Virtual Routing
- Multicast handling

Underlay Fabric: Open Hardware & Software Stacks

Spine Switch

Leaf/Spine Switch Software Stack

OCP: Open Compute Project ONL: Open Network Linux ONIE: Open Network Install Environment BRCM: Broadcom Merchant Silicon ASICs OF-DPA: OpenFlow Datapath Abstraction

Underlay Fabric Operation

Underlay Fabric ASIC Pipeline* (BRCM's OF-DPA)

Classic-SDN Myths:

- **1. Dataplane packets need to go to controller** <u>Reality</u>: Application designs mode of operation!
- Fabric control application designed such that dataplane packets <u>never</u> have to go to the controller.
- 2. Controllers are out-of-the-network, like management stations <u>Reality</u>: Controllers are Network Elements (NEs)!
- Almost all NE redundany is 1:1 or 1+1 (2-way redundancy)
- ONOS does much, much more
 - 3-way, 5-way, 7-way redundancy
 - Bonus: scales the same way

ONOS N-Way Redundancy

Spreading mastership over controller instances contributes to scale

ONOS N-Way Redundancy

Spreading mastership over controller instances contributes to scale

Outline

Underlay Fabric

- Bare-metal + Open-source = White-Box
- L2/L3 Leaf-Spine with SDN Control

Virtual Network Overlay

- OVS and VXLAN with SDN Control
- Service chaining

vRouter

- Distributed Virtual Routing
- Multicast handling

Virtual Network Overlay

Service Composition Impl

Service graph is created by XOS and programmed into OvS by overlay-control app (VTN)

Distributed load-balancers exist for each service in each OvS

OVS Pipeline^{*} (Vnets & Service-Chaining)

* Simplified view

<u>All</u> flow-tables & port-groups are programmed using OpenFlow 1.3 VxLAN tunnel ports are created using OVSDB protocol

Trellis Overlay & Underlay

Outline

Underlay Fabric

- Bare-metal + Open-source = White-Box
- L2/L3 Leaf-Spine with SDN Control

Virtual Network Overlay

- OVS and VXLAN with SDN Control
- Service chaining

vRouter

- Distributed Virtual Routing
- Multicast handling

vRouter as a VNF?

<u>Issues</u>: Hairpinning, Embedded control plane complexity for scale-out

<u>Issues</u>: Still hairpinning through a load-balancer appliance

Trellis vRouter

Optimized Multicast in R-CORD

R-CORD Multicast video streams never need to go through any software switch or VNF

Trellis Summary

TRELLIS: DC Fabric Underlay + Virtual Network Overlay + Unified SDN Control

Underlay Fabric

۲

- L2/L3 spine-leaf fabric built on bare-metal hw and open-source software
 - Preferred architecture in modern DCs: horizontal scaling & high bisection bandwidth
 - Designed to scale up to 16 racks (~ 40 hardware switches)
 - Low cost ~ \$5k per switch
- SDN control plane no distributed protocols
 - Proactive mode of operation
 - Highly available & scalable ONOS N-way control plane redundancy & scale
 - Modern ASIC data plane 1.28 Tbps switching bandwitdth for each switch
 - Broadcom's OF-DPA + OpenFlow 1.3 use of multi-tables & port-groups => dataplane scale

Virtual Network Overlay

- Designed for NFV (service-chained VNFs) with best principles of cloud
 - Orchestration, agility, elasticity, micro-services
- **Overlay control application** (VTN) implements/maintains service graph presented by XOS
 - SDN control plane mostly proactive, HA, no distributed protocols
 - Designed to scale up to 400 virtual switches
- OvS + VXLAN data plane
 - Standard VXLAN dataplane encap/decap with entropy-hashing
 - Custom OvS pipeline for tenant virtual networks, service-chaining & per-service load-balancing

Unified SDN Control

- **Common control** provides opportunites for optimized service delivery
 - vRouter Distributed routing using SDN control and hardware fabric
 - Multicast IPTV service delivery in R-CORD
 - More to follow

BACKUP

CORD Infrastructure Choices: #Racks

22

CORD comes in many sizes → Suitable for many different deployment scenarios → Underlay leaf-spine fabric is designed to <u>scale horizontally</u>

CORD Infrastructure Choices: Underlay Fabric 🥢

<u>Open Source SDN</u> <u>Software</u> * OF-DPA API * ONL	<u>Dell</u> * Dell/DNI hardware * OF-DPA * FTOS / OS10	<u>OpenSwitch</u> * HP initiative * Most bare-metal hw	<u>Cumulus</u> * Cumulus Linux * Most bare-metal hw	
* Indigo		SONIC * Microsoft initiative	<u>Pluribus</u> * Netvisor software	
Bare Metal Hardware Choices	BigSwitch * Switch Light OS	* Most bare-metal hw	* Freedom bare-meta hw	Cisco
* Accton * Delta * Delt	* Most bare-metal hw	FBOSS * Facebook initiative	LinkedIn	& others
 Dell Wedge Quanta 	<u>Pica8</u> * PicOS	vvedge nw	* Bare metal hw	
* Interface Masters * Celestica	* Most bare-metal hw		Broadcom * FastPath software	
	<u>Google</u> * Jupiter fabric		* Bare metal hw	
White Box SDN	Grey Box SDN	White Box Td	Grey Box Td	Black Box Td
Open Source SDN Software on Bare-Metal Hardware	Proprietary SDN Software on Bare-Metal Hardware	Open Source Traditional n/w Software on Bare- Metal Hardware	ProprietaryTraditional n/w Software on Bare- Metal Hardware	ProprietaryTraditiona n/w Software on Proprietary Hardware

CORD uses White Box SDN \rightarrow 1) Simpler 2) Easier to introduce new features 3) Lower TCO + Significant advantages of common SDN control over underlay and overlay.

Progressively less agile, slower innovation, more complex as we move from Left \rightarrow Right

CORD Infrastructure Choices: Software Switche

Tput @ 64B (Phy-vSwitch-Phy)

CORD System: Access Choices

- Remote leafs can be managed in-band by ONOS at CO node
- Remote leafs perform
 - <u>Aggregation</u> of 'pizza-box' OLT traffic
 - Assumes transport equipment can deliver double-vlan tagged Ethernet frames from remote-leaf to CO
 - <u>Encapsulation</u> of frames (if necessary)
 - E-Lines implemented using MPLS PW

CORD System: Metro Choices

CORD Infrastructure Roadmap

CORD System: PNFs

CORD Service graphs are implemented by <u>both</u> overlay & underlay fabrics

Why DC Leaf-Spine Fabrics?

Old design not good for east-west (dominant) traffic in modern data-centers

Why Bare Metal Switches?

Cost 400,000 servers 20,000 switches \$5k vendor switch = \$100M \$1k bare-metal switch = \$20M Savings in 10 data centers = \$800M

Control

Tailor network to applications Proprietary behavior Quickly debug No vendor lock-in

Why SDN?

Benefits of Classic SDN

1. Simpler Control with Greater Flexibility

• Networks work because we can master complexity, but what we should be doing is extracting simplicity, with the right abstractions

2. Speed of Innovation, Ease of Service Insertion & Faster Time to Market

• Does not involve changing/creating a fully distributed protocol

3. Lower Total Cost of Ownership (TCO)

- Lower Opex easier to manage, troubleshoot, emulate
- Lower Capex replacing proprietary hardware

Analytics Driven Traffic Engineering

Policy Driven Traffic Engineering

`_

Devices

Links

Hosts :

Intents

Tunnels

Version :

Flows :

Topology SCCs : 1

ONOS Summary

8

32

10

0

0

116

1.3.0.sanghoshin

Open Network Operating System

onos> srpolicy-add p1 1000 10.200.3.31/32 10.200.4.41/32 TUNNEL_FLOW sr34 onos> srnolicy-list

ios>	<pre>srpolicy-list</pre>	ist onos> srtunnel				-list		
ID	TYPE	PRIORITY	SRC_IP	DST_IP	TUNNEL_ID	ID	GROUP	LABELS
p1	TUNNEL_FLOW	1000	10.200.3.31/32	10.200.4.41/32	sr34	sr34	175	[103, 106, 104]

Analytics Driven Traffic Engineering

