
Beyond Micro-Services: CORD’s
Model-Driven Design

Introduction
Building scalable cloud applications as a collection of micro-services is a promising approach to
NFV Orchestration. This is because micro-services are well established as the cornerstone of
DevOps, which network operators see as a path to improving agility. At the same time, CORD
adopts Everything-as-a-Service (XaaS) as an organizing principle, which naturally leads to the
question: How does CORD (and XaaS) differ from a micro-services architecture?

This document answers that question, and in doing so, describes CORD’s model-driven design.
XOS is the component of CORD that codifies its models, where XOS can be viewed as a
service control plane layered on top of a collection of micro-services. What is innovative about
this service control plane is that it is defined by a set of declarative models and a set of
operations on those models, where XOS enforces these models and operations to extract the
desired behavior from the system as a whole.

This approach effectively defines CORD’s architecture programmatically, with the models and
invariants serving as a specification of the architecture, and XOS “executing” this specification
using a generative toolchain that translates the declarative specification into executable code.
Moreover, as operators and developers gain experience with CORD, they are able to codify that
experience in the models and invariants, making it possible to evolve the architecture over time.
The paper concludes with a discussion of this architectural approach.

Micro-Service Architecture
The case for building cloud applications as a collection of micro-services is compelling. This
section gives a brief overview.

Developers start with a rich collection of open source container images; everything from
databases to event buses to web servers are available as building block components.
Applications are then constructed by deploying these images in a set of containers, and
interconnecting these containers with virtual networks. It is easy to see the appeal of this
approach. Building a cloud app from a set of containers is reminiscent of writing a Unix
application by piping data through a sequence of commands, each running in its own process.

But micro-services go beyond the Unix paradigm by targeting a scalable cloud rather than one
machine. This means that instead of a single container at each stage in the pipeline, there is an

opportunity to run a scalable set of containers, with containers spun up and down as workload
dictates. Moreover, instead of directly connecting individual containers, groups of containers
running a common image (a micro-service) are interconnected by one or more virtual networks,
with requests load-balanced across the set of containers implementing each micro-service.

A container management system like Kubernetes or Docker Swarm takes responsibility for
scaling such an application. It both load-balances requests across the containers within a
micro-service and load-balances the entire set of containers across the physical servers in the
underlying cloud. One key advantage of breaking the application into micro-services is that they
can each be scaled independently of each other.

The final piece to the puzzle is the configuration and management of the individual
micro-services. This is typically done according to the DevOps discipline, for example, using a
remote management tool like Ansible. Figure 1 depicts an example cloud application built from a
collection of four micro-services.

Figure 1. A collection of micro-services managed from playbooks.

Micro-services have been used to build a wide range of cloud applications, from Yelp to Netflix,
but there are two key assumptions built into the approach. We discuss them here.

First, micro-services are used to build a single application. Yelp is always Yelp; it is never
reconfigured to be Netflix or a Netflix+Yelp hybrid. This assumption has two implications. One is
that all the micro-services run in a single trust domain. This means, for example, that if a
micro-service that implements a NoSQL database is used by two other micro-services, X and Y,
then there is nothing (other than the implicit trust of being part of the same app) keeping X from
reading or writing Y’s data. Another is that the set of micro-services that implement a cloud
application are relatively static. They each evolve and scale independently of each other, but it
would be uncommon for the overall composition to change. This naturally leads to both hard
coding of inter-service dependencies, and ad hoc sharing of global state across micro-service
boundaries. The bottom line is that our goal is to support a multi-tenant platform (i.e., services
are isolated from each other), with each tenant of the platform running a multi-tenant service

(i.e., end-users/subscribers are isolated from each other), where per-subscriber context is
preserved end-to-end across a set of services.

Second, container management systems that enable micro-services typically support a fixed
infrastructure. This also has two implications. One is that container management systems lock in
a particular virtualization technology, such as Docker containers. There is no flexibility to include
either heavier-weight technologies (e.g., VMs) or lighter-weight technologies (e.g.,
namespaces). Another is that only servers—and not the network switches that interconnect
those servers—are programmable. This means the virtual networks that interconnect
micro-services have fixed behavior, and the micro-services themselves are limited to
“server-based” implementations. There is no allowance for “switch-based” implementations.
Consider this last point in the context of CORD, where both the vOLT and vRouter services are
implemented as control apps running on ONOS. Neither qualifies as a micro-service in the
traditional sense, but both provide functionality that can be composed with other functionality to
build a solution.

Service Control Plane
This section describes how XOS, by implementing a service control plane on top of a collection
of micro-services, addresses the shortcomings outlined in the previous section. Figure 2
sketches the high-level idea, which is inspired by (and borrows terminology from) SDN: XOS
defines the service control plane, and it is layered on top of a collection of micro-services that
collectively implement the service data plane. While we borrow the idea of explicitly separating
the service control and data planes from SDN, the service data plane is not equivalent to the
network data plane (although the former may be embedded in the latter).

Figure 2. Service Control Plane (implemented by XOS) manages a Service Data Plane

(implemented by a set of micro-services).

Figure 2 shows the playbooks as part of XOS (the solid colored squares), but that is just part of
the story. Figure 3 shows a more complete picture, which includes a set of containers organized
into three layers: the bottom layer implements a collection of Synchronizers (each container in

this set includes a micro-service playbook); the middle layer implements a Data Model (it
includes an event bus, a persistent store, and the XOS Core); and the top layer implements
various Views (each of which defines a different user interface for accessing the data model).
Although shown as individual containers in Figure 3, each scales as an independent
micro-service.

Figure 3. XOS internal organization: A collection of containers (micro-services) organized into

three layers: Views, Data Model, and Synchronizers.

The interaction between XOS and the backend micro-services is similar to that of an SDN
controller and a set of switches in the data plane: XOS configures and controls the
micro-services, but it does not interject itself into inter-service communication, with one
important exception: XOS mediates one micro-service acquiring tenancy in another
micro-service. But once tenancy is acquired, communication is direct between micro-services (in
the service data plane) without XOS involvement.

By mediating trust, XOS relaxes the micro-service assumption that all micro-services operate in
a single trust domain. Different domains interact with XOS serving as a trusted intermediary. By
defining a logically centralized data model, XOS is able to explicitly model all inter-service
dependencies and apply policies uniformly across them, thereby creating a configurable
platform rather than a fixed cloud application. By separating the service control plane (which
models a service) from the service data plane (which implements a service) XOS is able support
a range of backend service implementations, including both server-based (running in containers
or using some other virtualization mechanism) and switch-based (running as flow rules installed
in the underlying switches).

Being able to model all inter-service dependencies is also important because it provides a
logical representation of the system that is easy to reason about. This makes it possible to

define a set of policies and invariants about how the system should behave as a whole, where
Synchronizers then localize the complexity of dealing with the operational components.

Another useful perspective about the role of XOS is that it roughly corresponds to Ansible Tower
combined with Model-Driven Engineering (MDE). Ansible Tower curates a library of Ansible
playbooks, and can trigger them at particular times, in response to particular events, or as part
of larger workflows. This approach is effective for scaling IT automation, but is largely
mechanistic and lacks higher-level abstractions that can help with reasoning about a complex
domain. In contrast, the MDE methodology builds a software system around an abstract model
of a domain. Benefits of MDE include accelerating and simplifying the design process via reuse
of standardized models and recurring design patterns. In essence, XOS layers a lightweight
MDE discipline over something like Ansible Tower: models in XOS abstractly represent the
domain to be orchestrated, where changes in the models trigger Ansible playbooks to run using
information stored in the model.

The next section discusses the role of the Data Model at the heart of XOS in more detail, but we
conclude this section by showing how XOS is applied in the specific case of CORD. As depicted
in Figure 4, a common configuration of a CORD POD consists of XOS serving as the CORD
Controller, a network operating system (e.g., ONOS) controlling the virtual and physical
switches, a set of SDN control applications running on ONOS, one or more
Compute-as-a-Services (e.g., OpenStack and/or Docker Swarm) managing a set of VMs and/or
containers, and a set of VNFs running in those VMs/containers. Because everything is a
service, even platform components like ONOS and the selected CaaS(es) are treated as
services.

Figure 4. A typical CORD POD, consisting of XOS (serving as the CORD Controller) managing

a set of backend micro-services.

While Figure 4 shows the control apps dependency on ONOS and the VNFs dependency on
some CaaS, it does not show the relationships and dependencies among the VNFs and control

apps. These dependencies are managed by the CORD Controller (i.e., XOS), as discussed in
the next two sections.

XOS: Modeling Framework
XOS both defines the authoritative state for the system and enforces a set of policies and
invariants that govern the system’s behavior. The latter includes mediating trust among the
micro-services and assembling the data path through the underlying servers and switches. At
the core of XOS (implemented by the “XOS Core” container shown in Figure 3) is a modeling
framework. This framework consists of two parts.

First, XOS defines a language for specifying data models. This language is based on Google’s
protocol buffers (protobufs), borrowing their syntax, but extending their semantics to express
additional behavior (see below). Although these extensions can be written in syntactically valid
protobufs (using the protobuf option feature), the resulting model definitions are cumbersome
and their semantics are under-specified. The XOS Core therefore introduces an alternative
syntax, called xproto, that is a syntactic wrapper around protobufs. xproto is syntactically
cleaner than protobufs, but also highlights the fact that the language’s semantics are not fully
captured by protobufs. Users are free to define models using standard protobufs instead of the
xproto syntax, but doing so obscures the fact that packing new behavior into the options field
renders protobuf’s semantics under-specified. With this understanding, we refer to the modeling
language as xproto throughout the rest of this document.

Whereas protobufs facilitate one operation on models—namely, data serialization—xproto goes
beyond protobufs to provide a framework for implementing custom operators. This includes
explicit support for the following:

● Relationship Operators → define relationships among models
● Policy Operators → logic formulae that produce "yes" or "no" verdicts
● Map/Reduce Operators → split/merge single values into/from multiple buckets

Second, XOS provides a tool chain for generating code based on a set of models loaded into
the XOS Core. This generative tool chain, as illustrated in Figure 5, first translates xproto model
specifications into an internal representation (currently implemented as a Python dict), and then
applies a per-target Jinja2 template to this internal representation to produce a given target.
Example targets that can be generated from the xproto-based data model include:

● Object Relation Mapping (ORM) – maps the data model onto the underlying database.
● gRPC Interface – how all the other containers communicate with XOS Core.
● TOSCA API – one of the UI/Views shown in Figure 3.
● Security Policies – governs which principals can read/write which models.
● Synchronizer Framework – execution environment in which Ansible playbooks run.
● Hierarchical CORD – distribute data model over a set of CORD domains.

● Auto-virtualizer – enforce multi-tenancy on micro-services.
● Unit Tests – auto-generate API unit tests.

Figure 5. XOS generative tool chain.

As an example, consider the following xproto definition for the Privilege model, which
represents read, write, and grant rights that have been granted to users. This model is policed
by the grant_policy policy, which governs when the user has the right to grant a privilege to
another user.

policy grant_policy < ctx.user.is_admin

 | exists Privilege:Privilege.object_type = obj.object_type

 & Privilege.object_id = obj.object_id

 & Privilege.accessor_type = "User"

 & Privilege.accessor_id = ctx.user.id

 & Privilege.permission = "role:admin" >

message Privilege::grant_policy (XOSBase) {
 required int32 accessor_id = 1 [null = False];

 required string accessor_type = 2 [null = False, max_length=1024];

 required int32 controller_id = 3 [null = True];

 required int32 object_id = 4 [null = False];

 required string object_type = 5 [null = False, max_length=1024];

 required string permission = 6 [null = False, default = "all", max_length=1024];

 required string granted = 7 [content_type = "date", auto_now_add = True, max_length=1024];

 required string expires = 8 [content_type = "date", null = True, max_length=1024];

}

In this example, the policy is executed relative to three implied inputs: (1) the object and model
on which the policy is invoked (e.g., obj.object_type), (2) the context in which the policy is
invoked (e.g., cxt.user), and (3) the data model as a whole (e.g., “role:admin”).

This example model includes a set of primitive field types (e.g., int32, string), but does not
include any foreign keys (relationships to other models). An example that does is the following
definition of a ServiceInstance, which includes a many-to-many relationship to other service
instances.

message ServiceInstance (XOSBase, AttributeMixin) {
 optional string name = 1 [db_index = False, max_length = 200, null = True, blank = True];

 required manytoone owner->Service:service_instances = 2 [db_index = True, null = False, blank = False];

 optional string service_specific_id = 3 [db_index = False, max_length = 30, null = True, blank = True];

 optional string service_specific_attribute = 10 [db_index = False, null = True, blank = True, varchar = True];

}

These examples are intended as simple illustrations of how xproto is used. For a complete
specification see https://guide.opencord.org/xos/dev/xproto.html, and for the full set of core
models see https://github.com/opencord/xos/tree/master/xos/core/models.

The bottom line is that XOS generates much of the software that “binds” the elements of CORD
together, approximately 120k lines-of-code in the latest version. Figure 6 depicts where this
code is embedded in the system.

Figure 6. Generated Software in CORD.

XOS: Core Models
The XOS modeling framework is a software tool for building a system like CORD, but it’s also
necessary to define a set of core models. These core models—which evolved out of years of
experience with CORD and CORD-like systems—effectively specify the system’s architecture.
For CORD, this starts with the Service model, which generalizes the micro-services architecture
outlined in an earlier section. The CORD data model is defined elsewhere, so we focus here on
three key ideas.

First, a Service is bound to a set of Slices, each of which represents a combination of
virtualized compute resources (both containers and VMs) and virtualized network resources
(virtual networks). Whether a given service is implemented by a VNF image that runs in a virtual
compute instance (a so-called server-based service) or an SDN control application that installs
flow rules in a white-box switch (a so-called switch-based service) is an implementation detail in
the sense that the service developer decides the right approach.

Second, a ServiceDependency model represents the binding of a subscriber service to a
provider service. This dependency is parameterized by a ConnectMethod that defines how the

https://guide.opencord.org/xos/dev/xproto.html
https://github.com/opencord/xos/tree/master/xos/core/models

two services are interconnected in the underlying network data plane. The approach is general
enough to interconnect two server-based services, two switch-based services, or a
server-based and a switch-based service pair. This makes it possible to construct a service
graph without regard to how the underlying services are implemented in the underlying servers
and switches.

Third, for a service graph defined by a collection of Service and ServiceDependency models,
every time a subscriber requests service (e.g., connects their cell phone or home router to
CORD), a ServiceInstance object is created to represent the virtualized instance of each
service traversed through the service graph on behalf of that subscriber. Different subscribers
may traverse different paths through the service graph, based on their customer profile, but the
end result is a linked sequence of ServiceInstance objects, forming an end-to-end,
per-subscriber service chain. Figure 7 shows a set of ServiceInstances associated with the
service graph from the Residential deployment of CORD (R-CORD). Note that this example is
simpler than the general case, which permits both the service graph and the per-subscriber
service chains to be arbitrary directed acyclic graphs.

Figure 7. Example service graph and associated per-subscriber service chains.

Importantly, this service chain corresponds to a list of ServiceInstance objects, where each
node in the list represents some combination of virtualized compute and network resources; the
service chain is not necessarily implemented by a sequence of containers or VMs. That would
be one possible incarnation in the underlying service data plane, but how each individual
service instance is realized in the underlying resources depends on how the selected set of
services happen to be implemented (e.g., as a legacy VNF running in a VM, as a micro-service
running in containers, or as an SDN control app running on top of ONOS). Moreover, because
the data model provides a way to represent this end-to-end service chain, it is possible to
access and control resources on a per-subscriber basis, in addition to controlling them on a
per-service basis. This is an essential element supporting end-to-end isolation for subscribers 1

across a sequence of multi-tenant services running on a multi-tenant platform.

1 Confusingly, the set of resources bound to a Service is called a “Slice” in XOS, while the set of
resources bound to a each subscriber (or class of subscribers) is often called a “Network Slice” in the
emerging 5G arena. Both are modeled in XOS, with the latter (Network Slice) spanning a collection of the
former (XOS Slices).

Architectural Approach
The word architecture means different things to different people. To a software engineer, it
typically corresponds to the software stack—the collection of software modules, their interfaces,
and the dependency among the modules. To a network operator, it often corresponds to the
hardware equivalent—a wiring diagram for a collection of devices and switches.

In both cases, there are best practices that guide the evolution of the architecture over time, but
these guiding principles are implicit, often in the heads of the people responsible for building the
system. They also accept a set of user requirements as input, but it is the engineer’s
responsibility to translate those requirements into running code, and when it’s necessary to
adapt or extend the architecture, to do so in a way that’s consistent with best practices. In the
context of cloud applications, for example, implementing everything as micro-services is an
example best practice, but it is effectively cloud-speak for adhering to a modular design (done in
a way that allows each module to scale independently).

At a higher level, an architecture is generally taken to imply something more than the set of
building blocks and how they are assembled. It also includes the set of rules or invariants that
guide how the building blocks are all assembled, reconfigured, and extended onto over time.
This includes “be modular” but typically goes beyond modularity in some domain-specific way.
Because software is infinitely malleable, an architecture is often a statement about what
engineers cannot do as they evolve the system to meet new requirements. One challenge is
how to enforce those rules, so as to avoid the situation where the system remains modular, but
is the software equivalent of the Winchester house.

On the flip slide, these architectural rules might be wrong or short-sighted, resulting in a system
that cannot be cleanly extended to meet some new requirement. This might imply it’s time for a
fresh start (clean slate), but quite often the system continues to evolve with little or no
architectural integrity, again leading to a convoluted and brittle system.

The key idea behind the model-driven approach adopted by CORD is to codify the “architectural
definition of the system” in a data model. This includes the models and the relationships among
them, but it also includes a set of policy statements and invariants made about those models.
We see the model definitions and policy statements as “jointly authored” by the architects (who
evolve the definition of the system based on their experience trying to meet user requirements)
and engineers (who evolve the definition of the system based on their experience trying to
implement the system). But instead of this definition being in words in a requirement document,
it is executable code (expressed in xproto, in our case), where the generative toolchain then
outputs the elements that realize and enforce those definitions.

