
OpenConfig and telemetry overview for A-CORD
Anees Shaikh (Google)
on behalf of Google network operations and OpenConfig group

www.openconfig.net

Agenda

OpenConfig project overview

Streaming telemetry

Open discussions on applications for A/CORD

3

Data models

models for common
configuration and
operational state data
across platforms

Streaming telemetry

Scalable, secure,
real-time monitoring
with modern streaming
protocols

RPCs and tools

Management RPC specs
and implementations

Tooling to build config
and monitoring stacks

Projects

TeraStream

Participants

4

OpenConfig data models

● data models for configuration and operational state, written in YANG

● initial focus: device data for switching, routing, and transport (WiFi coming soon)

● development priorities driven by operator requirements

● technical engagement with major vendors to deliver native implementations

Implementations shipping or in-progress from multiple vendors

OpenConfig data model progress 1/

5

device

network
instance

routing
tables
+VRFs

protocols

local

aggregate static

bgpis-is ospf_v2

mplsvlans

rib fib rsvp/te

sr

routing
policy

interfaces

IPv[46] eth lag

published
model

under
review

in-progress

legend

bfd
routing
auth

pbr

OpenConfig data model progress 2/

6

device

L2

lldp lacp stp

platform system

aaa

acl

telemetry

optical
transport

terminal
optics

wavelength
router

optical
amplifier

qos

published
model

under
review

in-progress

legend

Better visibility with streaming telemetry

7

operational state monitoring is crucial for network health and traffic management
● counters, power levels, protocol stats, up/down events, inventory, alarms, ...

SNMP / TL1 client ● O(min) polling
● resource drain

on devices
● legacy

implementation
● inflexible

structure
● proprietary

structure

SNMP/ TL1 POLLING

OpenConfig data models

telemetry collector ● subscribe to desired
data based on models

● streamed directly from
devices

● time-series or
event-driven data

● modern, secure
transport

STREAMING TELEMETRY

Production deployments of streaming
telemetry from multiple vendors

Elements of a streaming telemetry solution

8

device instrumentation

scalable collector infrastructure

TE alertsanalytics applications

common streaming protocol

data normalization OpenConfig data models

Realized benefits of streaming telemetry

Production deployments on multiple routing and transport platforms

9

better data coverage -- 2-3x number of variables

higher frequency -- fresher data for automation, health-checking, and control

event-driven notifications -- faster reaction and recovery

reliable delivery w/TCP (vs. SNMP w/UDP)

normalized data based on common data models

gNMI -- management software built on gRPC

gRPC -- performant, secure RPC framework evolved from Google Stubby
● bidirectional streaming built on standard HTTP/2
● pluggable load balancing, tracing, health checking and auth
● client libraries in 10 languages

10

@grpcio
v. 1.x

gNMI -- gRPC Network Management Interface

● single service for state management (streaming telemetry and
configuration)

● offers an implemented alternative to NETCONF, RESTCONF, …
● designed to carry any tree-structured data (not only YANG-modeled)

http://www.grpc.io/
http://www.grpc.io/
http://www.grpc.io/
https://twitter.com/grpcio
https://twitter.com/grpcio
https://github.com/openconfig/reference/tree/master/rpc/gnmi
https://github.com/openconfig/reference/tree/master/rpc/gnmi

OpenConfig tools ecosystem

Go language gNMI collector reference impl

BigMuddy -- Cisco UDP telemetry collector

OpenNTI -- Juniper UDP telemetry collector

Arista -- gRPC telemetry collector

telemetry collectors

pyangbind -- Python classes from YANG models,
JSON serialization

goyang -- Go language compiler for YANG
models

OpenConfig Go library -- library to create and
validate config instances (internal)

language bindings / data serialization

gNMI -- gRPC based management protocol spec

pynms -- example Python NMS code (beta)

NMS client / server

OpenConfig style guide

OpenConfig YANG model checker

OpenConfig documentation generator

YANG model authoring

11

https://github.com/openconfig/reference
https://github.com/cisco/bigmuddy-network-telemetry-stacks
https://github.com/cisco/bigmuddy-network-telemetry-stacks
https://github.com/Juniper/open-nti
https://github.com/Juniper/open-nti
https://github.com/aristanetworks/goarista
https://github.com/aristanetworks/goarista
https://github.com/robshakir/pyangbind
https://github.com/openconfig/goyang
https://github.com/openconfig/reference/tree/master/rpc/gnmi
https://github.com/openconfig/reference/tree/master/rpc/gnmi
http://pynms.io/
http://pynms.io/
https://github.com/openconfig/public/blob/master/doc/openconfig_style_guide.md
https://github.com/openconfig/oc-pyang
https://github.com/openconfig/oc-pyang

Putting it all together

multi-vendor devices

consistency
checker

TE alerts

dashboards, applications, ... intent API

workflow
orchestration

telemetry collector

streaming data

config / command
manager

common data model / transport protocol

OpenConfig
models

OpenConfig
models

12

http://www.grpc.io/
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public

Engaging with OpenConfig

network operators
● just join -- bring use cases, model extensions, tools, reviews, …
● use the models and tools -- help improve them
● push your vendors for native support

vendors
● feedback on models (particularly on implementability)
● implement streaming telemetry and native model support
● engage via your customers

OSS projects and ISVs
● adopt OpenConfig as a management API for common elements
● continue to build the model-based management ecosystem

14

Thank you

Anees Shaikh
(with contributions from many in Google networking and the
OpenConfig working group)

aashaikh@google

Extensions to gNMI

current gNMI definition supports only NMS-initiated connections to target devices
● extend to “dial-out” to support target-initiated connections

new services for operational commands
● e.g. ping, traceroute, reboot, clear BGP session, update firmware, …
● considering as a set of microservices , separate from main gNMI service

native Protobuf value encoding
● avoid type-casting to strings during encoding

15

Toward model-based streaming telemetry

16

Step 1 -- from poll to push

proprietary data over
proprietary transport,
partial coverage

collectors

Vendor
A

Vendor
B

Vendor
C

Step 2 -- more complete
data over RPC channel

proprietary data over
gRPC transport,
increased coverage

collectors

Vendor
A

Vendor
B

Vendor
C

Step 3 -- common data
model over RPC

gRPC transport with
common schema

collectors

Vendor
A

Vendor
B

Vendor
C

OpenConfig

The gNMI service

option (gnmi_service) = "0.2.2";

service gNMI {

 // Retrieve the set of capabilities supported by the target.

 rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);

 // Retrieve a snapshot of data from the target.

 rpc Get(GetRequest) returns (GetResponse);

 // Modify the state of data on the target.

 rpc Set(SetRequest) returns (SetResponse);

 // Subscribe to stream of values of particular paths within the data tree.

 rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);

}

