
Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Voltha High Availability Design
Document

Khenaidoo Nursimulu, Sergio Slobodrian

April 10, 2018

Proxy & Core

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 2

Contents

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 3

Contents

Fundamental Design Principles

Core Addition and Removal

Algorithms / Flowcharts

Core Distribution Across HW

Proxy Design

Voltha Core Design

Current Core Overview

Proposed Core Architecture

Success & Failure Examples

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 4

Fundamental Design Principles

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 5

Fundamental Design Principles

• Ensure 5 or 6 9’s availability
• 5 9’s – Less than 5 min / system / year outage
• 6 9’s – Less than 30 sec / system / year outage

• Support horizontal scaling
• Support 50ms recovery from failure in most cases
• Never lose a transaction

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 6

Fundamental principles � Design decisions

Principle Design Decisions

Ensure 5 or 6 9’s availability Primary/Secondary Cores

Support horizontal scaling Stateless cores

Support 50ms recovery from failure in most cases Primary/Secondary cores, stateless cores

Never lose a transaction Primary/Secondary cores

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 7

Proxy Design

Voltha High Availability Design Document

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 8

Core Addition and Removal

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 9

Active-Active Core Pairing

• For a non-id specific request the proxy will
send it to the least loaded AA pair.

• For an id specific request where the id is in the
affinity cache, the cached AAPair is used

• For an id specific request where the id isn’t in
the affinity cache the least loaded AA pair will
be selected and that selection cached.

• For all requests going to an AA pair no matter
how they got there

• The AA pair will send it to the primary (P) core
• The AA pair will immediately send it to the

secondary (S) core.
• Core loading is based on the responses since

only one of the 2 cores in a pair will process
the request.

C1

C2

C3

C4

AA Pair

P

P

P

P

S

S

S

S

AA Pair AA Pair

AA Pair

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 10

Active-Active Core Removal

C1

C2

C3

C4

AA Pair

P

P

P

P

S

S

S

S

AA Pair AA Pair

AA Pair

C2

C3

C4

AA Pair

P

P

P

S

S

S

AA Pair AA Pair

All AA Pair affinity
cache entries are
flushed.

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 11

Active-Active Core Addition

C1

C2

C3

C4

AA Pair

P

P

P

P

S

S

S

S

AA Pair AA Pair

AA Pair

C2

C3

C4

AA Pair

P

P

P

S

S

S

AA Pair AA Pair

All AA Pair affinity
cache entries are
flushed.

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 12

Algorithms / Flowcharts

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 13

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 14

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 15

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 16

Core distribution across HW

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 17

S1

Core distribution across HW

• One possible core distribution is shown on the
left.

• This is the minimum HA configuration, 3
servers and 6 cores.

• A core and it’s peer should never be co-
located on the same server

• For better load distributions, each server
should have a non-prime and a prime not
associated with the non-prime.

• Shown is S1:{C1,C2’}, S2:{C1’,C3}, S3:{C2,C3’}
• Could have also distributed as: S1:{C1, C2},

S2{C2’,C3’}, S3{C3,C1’}
• this would have been less optimal since the

non=prime cores are expected to be the
busiest based the proxy behavior.

C2

C1’

C1

C3’

C3

C2’

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 18

Voltha Core Design

Voltha High Availability Design Document

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 19

Current Core Overview

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 20

Voltha Core - Current Design

Event Bus

gRPC Server

Consul K
af

ka
 P

ro
xy

F
ra

m
eI

O

A
da

pt
er

 L
oa

de
r

Data Model

C
oo

rd
in

at
or

Global Handler

Local HandlerDispatcher

C
or

e

• Create global, local and
xpon handler/agent

• Reconcile Data after a
restart

• Proxy to the data model
• Handle add/remove device

and logical device
• Create/remove xpon

interface

xPON Handler

xPON Agent

Logical Device Agent

Alarm Filter Agent
Device Agent

<vendor> olt device handler

IAdapter Interface

Flow Decomposer

Dynamically loads adapters

Dispatch request to a specific
Vcores if the request refers to
devices of that core using grpc

• Handles requests for this
core.

• Dispatches OF events
(igmp. Eapol, etc) to
OFAgent

OFAgent

Envoy Proxy + REST

<vendor> onu Adapter Agent

<vendor> olt Adapter Agent

<vendor> onu device handler

Connection to vendor specific
OLTs with varied protocols

CLI Netconf

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 21

Voltha Core 2.0 – Removed/Transferred out components

Event Bus

gRPC Server

Consul K
af

ka
 P

ro
xy

F
ra

m
eI

O

A
da

pt
er

 L
oa

de
r

Data Model

C
oo

rd
in

at
or

Global Handler

Local HandlerDispatcher

C
or

e

• Technology specific
components like xPON need
to live in their own
containers

xPON Handler

xPON Agent

Logical Device Agent

Alarm Filter Agent
Device Agent

<vendor> olt device handler

IAdapter Interface

Flow Decomposer

Since adapters will be moved
out of vcore then there are no
need to have the adapters and
the adapter loader.

With affinity routing and
stateless vcore there is no
need of Dispatcher, Global
Handler and Coordinator
service.

OFAgent

Envoy Proxy + REST

<vendor> onu Adapter Agent

<vendor> olt Adapter Agent

<vendor> onu device handler

No need for FrameIO as the
core does not need it. Only
some adapters may still need it

CLI Netconf

Removed

Transferred out

Replaced by Etcd

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 22

Proposed Core Architecture

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 23

Voltha Core 2.0 – 4 µservices

NorthBound Affinity Routing Proxy

Kafka Adapter Messaging Bus

Handles device-specific operations:
• Create/Update/delete only
• Packet-out operations (OF)
• Packet-in operations (OF)
• Device lifecycle management

(discovery -> deletion)

Device Handler
µservice

Manages technology service
profiles
• Exposes a gRPC API to

create/update/read/delete
service profiles

Technology Service
Profile Management

µservice

Adapter X

OFAgent REST CLI Netconf

Adapter Y Adapter Sim Adapter Test

Etcd
Etcd

K
af

ka
 C

lu
st

er
 M

es
sa

gi
ng

 B
us

Handles:
• Read
• List

View Only µservice

Handles cluster specific operations:
• event filter
• backup & restore
• etc.

Cluster
Management

µservice

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 24

Device Handler µservice

NorthBound Affinity Routing Proxy

Adapter X

OFAgent REST CLI Netconf

Adapter Y Adapter Sim Adapter Test

Etcd
Etcd

K
af

ka

Flow Decomposer

Event Bus

gRPC Server – NorthBound Request

Data Model +
Device State Machine

API Handler

C
or

e

• Create the API handler
• Proxy to the data model
• Handle add/remove

device and logical device

Logical Device Agent

Event Filter AgentDevice Agent

• Handles create, update
and delete API requests
for this core.

• Handles proxy requests
(e.g. health check)

• Dispatches OF events
(IGMP. EAPOL, etc) to
OFAgent

May need to change the
current PON model to an
aggregation model to make an
easier transition to G.fast.

Adapter Agent

K
V

 C
lie

nt

All communications between
the core and adapters are via
kafka topics.

Kafka Adapter Messaging Bus

Kafka Proxy

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 25

Message latency – Kafka vs gRPC

0

10

20

30

40

50

60

70

80

90

100

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

50
8

52
1

53
4

54
7

56
0

57
3

58
6

59
9

61
2

62
5

63
8

65
1

66
4

67
7

69
0

70
3

71
6

72
9

74
2

75
5

76
8

78
1

79
4

80
7

82
0

83
3

84
6

85
9

87
2

88
5

89
8

91
1

92
4

93
7

95
0

96
3

97
6

98
9

Kafka/gRPC latency (1 Million messages)

Kafka Latency (ms) Grpc Latency (ms)

Test environment:
• Ubuntu VM (xenial)
• Client & Server (in golang)
• Client sends 1M requests to server
• For gRPC it’s a streaming connection
• Latency is the time a message takes

to reach the server (one-way)

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 26

Success & Failure Examples

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 27

Example– Reboot request (no error) – part I

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 28

Example– Reboot request (no error) – part II

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 29

Example– Reboot request (error) – part I

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 30

Example– Reboot request (error) – part II

